- Browse by Subject
Browsing by Subject "Orthogonal polynomials"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach(2019-08) Gharakhloo, Roozbeh; Its, Alexander; Bleher, Pavel; Yattselev, Maxim; Eremenko, AlexandreIn this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.Item Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice(2011-03-09) Liechty, Karl Edmund; Bleher, Pavel, 1947-; Its, Alexander R.; Lempert, Lazlo; Kitchens, Bruce, 1953-In this dissertation the partition function, $Z_n$, for the six-vertex model with domain wall boundary conditions is solved in the thermodynamic limit in various regions of the phase diagram. In the ferroelectric phase region, we show that $Z_n=CG^nF^{n^2}(1+O(e^{-n^{1-\ep}}))$ for any $\ep>0$, and we give explicit formulae for the numbers $C, G$, and $F$. On the critical line separating the ferroelectric and disordered phase regions, we show that $Z_n=Cn^{1/4}G^{\sqrt{n}}F^{n^2}(1+O(n^{-1/2}))$, and we give explicit formulae for the numbers $G$ and $F$. In this phase region, the value of the constant $C$ is unknown. In the antiferroelectric phase region, we show that $Z_n=C\th_4(n\om)F^{n^2}(1+O(n^{-1}))$, where $\th_4$ is Jacobi's theta function, and explicit formulae are given for the numbers $\om$ and $F$. The value of the constant $C$ is unknown in this phase region. In each case, the proof is based on reformulating $Z_n$ as the eigenvalue partition function for a random matrix ensemble (as observed by Paul Zinn-Justin), and evaluation of large $n$ asymptotics for a corresponding system of orthogonal polynomials. To deal with this problem in the antiferroelectric phase region, we consequently develop an asymptotic analysis, based on a Riemann-Hilbert approach, for orthogonal polynomials on an infinite regular lattice with respect to varying exponential weights. The general method and results of this analysis are given in Chapter 5 of this dissertation.Item NUTTALL’S THEOREM WITH ANALYTIC WEIGHTS ON ALGEBRAIC S-CONTOURS(Elsevier, 2015-02) Yattselev, Maxim L.; Department of Mathematical Sciences, School of ScienceGiven a function f holomorphic at infinity, the nth diagonal Padé approximant to f, denoted by [n/n]f, is a rational function of type (n,n) that has the highest order of contact with f at infinity. Nuttall’s theorem provides an asymptotic formula for the error of approximation f−[n/n]f in the case where f is the Cauchy integral of a smooth density with respect to the arcsine distribution on [−1,1]. In this note, Nuttall’s theorem is extended to Cauchy integrals of analytic densities on the so-called algebraic S-contours (in the sense of Nuttall and Stahl).Item On smooth perturbations of Chebyshëv polynomials and ∂¯ -Riemann–Hilbert method(Cambridge University Press, 2023) Yattselev, Maxim L.; Mathematical Sciences, School of Science