- Browse by Subject
Browsing by Subject "Orthodontic Anchorage Procedures"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Laser-treated stainless steel mini-screw implants: 3D surface roughness, bone-implant contact, and fracture resistance analysis(Oxford University Press, 2016-04) Kang, He-Kyong; Chu, Tien-Min; Dechow, Paul; Stewart, Kelton; Kyung, Hee-Moon; Liu, Sean Shih-Yao; Department of Orthodontics and Oral Facial Genetics, School of DentistryBACKGROUND/OBJECTIVES: This study investigated the biomechanical properties and bone-implant intersurface response of machined and laser surface-treated stainless steel (SS) mini-screw implants (MSIs). MATERIAL AND METHODS: Forty-eight 1.3mm in diameter and 6mm long SS MSIs were divided into two groups. The control (machined surface) group received no surface treatment; the laser-treated group received Nd-YAG laser surface treatment. Half in each group was used for examining surface roughness (Sa and Sq), surface texture, and facture resistance. The remaining MSIs were placed in the maxilla of six skeletally mature male beagle dogs in a randomized split-mouth design. A pair with the same surface treatment was placed on the same side and immediately loaded with 200 g nickel-titanium coil springs for 8 weeks. After killing, the bone-implant contact (BIC) for each MSI was calculated using micro computed tomography. Analysis of variance model and two-sample t test were used for statistical analysis with a significance level of P <0.05. RESULTS: The mean values of Sa and Sq were significantly higher in the laser-treated group compared with the machined group (P <0.05). There were no significant differences in fracture resistance and BIC between the two groups. LIMITATION: animal study CONCLUSIONS/IMPLICATIONS: Laser treatment increased surface roughness without compromising fracture resistance. Despite increasing surface roughness, laser treatment did not improve BIC. Overall, it appears that medical grade SS has the potential to be substituted for titanium alloy MSIs.Item Miniature Implants for Orthodontic Anchorage(2001) Deguchi, Toru; Garetto, Lawrence P.; Katona, Thomas R.; Hohlt, Thomas R.; Roberts, W. Eugene; Shanks, James C.Anchorage control is fundamental to successful orthodontic treatment. Dental implants can serve as ideal anchorage units because of their stability in bone. Previous studies limit the use of existing implants for anchorage because of their large size. Minimizing the size of the implant would reduce the extent of the surgery and may result in a decreased and less traumatic healing period. The objective of this study was to histomorphometrically analyze the use of miniature implants. A total of 96 miniature implants (1.0 x 5.0 mm; 48 loaded and 48 healing control) were placed in the mandible and maxilla of 8 male dogs. The implants were allowed to heal for three different periods (3, 6, and 12 weeks) followed by 12 weeks of 200 to 300 g of orthodontic force application. Bone specimens containing implants were collected for histomorphometric analysis. The results indicate that clinical rigidity (osseointegration) was achieved by 96.9 percent of the miniature implants. Histomorphometric analysis revealed that the amount of bone contact at the implant-bone interface ranged from 11.3 to 68 percent (mean ± SEM=34.4 ± 4.6 percent) in the healing control groups and from 18.8 to 63 percent (mean=43.l ± 4.0 percent) in the force applied groups in the maxilla. On the other hand, in the mandible, bone-implant contact ranged from 7 to 82 percent (mean=44.1 ± 6.8 percent) in the healing control groups and from 12 to 72 percent (mean=50.7 ± 5.3 percent) in the force applied groups. Results from bone formation rate, mineralizing surface/bone surface and mineral appositional rate showed a significant difference in the 3-week healing control group compared to those in other groups. From these results, we concluded that miniature implants are able to function as rigid osseous anchorage for orthodontics with minimal (less than 3 weeks) healing period. This study was supported by Matsumoto Research fund.