- Browse by Subject
Browsing by Subject "Organoids"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item A pan-cancer organoid platform for precision medicine(Elsevier, 2021) Larsen, Brian M.; Kannan, Madhavi; Langer, Lee F.; Leibowitz, Benjamin D.; Bentaieb, Aicha; Cancino, Andrea; Dolgalev, Igor; Drummond, Bridgette E.; Dry, Jonathan R.; Ho, Chi-Sing; Khullar, Gaurav; Krantz, Benjamin A.; Mapes, Brandon; McKinnon, Kelly E.; Metti, Jessica; Perera, Jason F.; Rand, Tim A.; Sanchez-Freire, Veronica; Shaxted, Jenna M.; Stein, Michelle M.; Streit, Michael A.; Tan, Yi-Hung Carol; Zhang, Yilin; Zhao, Ende; Venkataraman, Jagadish; Stumpe, Martin C.; Borgia, Jeffrey A.; Masood, Ashiq; Catenacci, Daniel V. T.; Mathews, Jeremy V.; Gursel, Demirkan B.; Wei, Jian-Jun; Welling, Theodore H.; Simeone, Diane M.; White, Kevin P.; Khan, Aly A.; Igartua, Catherine; Salahudeen, Ameen A.; Medicine, School of MedicinePatient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.Item A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs(Cell Press, 2023) van der Valk, Wouter H.; van Beelen, Edward S. A.; Steinhart, Matthew R.; Nist-Lund, Carl; Osorio, Daniel; de Groot, John C. M. J.; Sun, Liang; van Benthem, Peter Paul G.; Koehler, Karl R.; Locher, Heiko; Otolaryngology -- Head and Neck Surgery, School of MedicineInner ear disorders are among the most common congenital abnormalities; however, current tissue culture models lack the cell type diversity to study these disorders and normal otic development. Here, we demonstrate the robustness of human pluripotent stem cell-derived inner ear organoids (IEOs) and evaluate cell type heterogeneity by single-cell transcriptomics. To validate our findings, we construct a single-cell atlas of human fetal and adult inner ear tissue. Our study identifies various cell types in the IEOs including periotic mesenchyme, type I and type II vestibular hair cells, and developing vestibular and cochlear epithelium. Many genes linked to congenital inner ear dysfunction are confirmed to be expressed in these cell types. Additional cell-cell communication analysis within IEOs and fetal tissue highlights the role of endothelial cells on the developing sensory epithelium. These findings provide insights into this organoid model and its potential applications in studying inner ear development and disorders.Item Building inner ears: recent advances and future challenges for in vitro organoid systems(Springer Nature, 2021-01) van der Valk, Wouter H.; Steinhart, Matthew R.; Zhang, Jingyuan; Koehler, Karl R.; Otolaryngology -- Head and Neck Surgery, School of MedicineWhile inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into "inner ear organoids" containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.Item Current Advances in Basic and Translational Research of Cholangiocarcinoma(MDPI, 2021-06-01) Sato, Keisaku; Baiocchi, Leonardo; Kennedy, Lindsey; Zhang, Wenjun; Ekser, Burcin; Glaser, Shannon; Francis, Heather; Alpini, Gianfranco; Medicine, School of MedicineCholangiocarcinoma (CCA) is a type of biliary tract cancer emerging from the biliary tree. CCA is the second most common primary liver cancer after hepatocellular carcinoma and is highly aggressive resulting in poor prognosis and patient survival. Treatment options for CCA patients are limited since early diagnosis is challenging, and the efficacy of chemotherapy or radiotherapy is also limited because CCA is a heterogeneous malignancy. Basic research is important for CCA to establish novel diagnostic testing and more effective therapies. Previous studies have introduced new techniques and methodologies for animal models, in vitro models, and biomarkers. Recent experimental strategies include patient-derived xenograft, syngeneic mouse models, and CCA organoids to mimic heterogeneous CCA characteristics of each patient or three-dimensional cellular architecture in vitro. Recent studies have identified various novel CCA biomarkers, especially non-coding RNAs that were associated with poor prognosis or metastases in CCA patients. This review summarizes current advances and limitations in basic and translational studies of CCA.Item Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids(Springer, 2022) Romano, Daniel R.; Hashino, Eri; Nelson, Rick F.; Otolaryngology -- Head and Neck Surgery, School of MedicineSensorineural hearing loss (SNHL) is a major cause of functional disability in both the developed and developing world. While hearing aids and cochlear implants provide significant benefit to many with SNHL, neither targets the cellular and molecular dysfunction that ultimately underlies SNHL. The successful development of more targeted approaches, such as growth factor, stem cell, and gene therapies, will require a yet deeper understanding of the underlying molecular mechanisms of human hearing and deafness. Unfortunately, the human inner ear cannot be biopsied without causing significant, irreversible damage to the hearing or balance organ. Thus, much of our current understanding of the cellular and molecular biology of human deafness, and of the human auditory system more broadly, has been inferred from observational and experimental studies in animal models, each of which has its own advantages and limitations. In 2013, researchers described a protocol for the generation of inner ear organoids from pluripotent stem cells (PSCs), which could serve as scalable, high-fidelity alternatives to animal models. Here, we discuss the advantages and limitations of conventional models of the human auditory system, describe the generation and characteristics of PSC-derived inner ear organoids, and discuss several strategies and recent attempts to model hereditary deafness in vitro. Finally, we suggest and discuss several focus areas for the further, intensive characterization of inner ear organoids and discuss the translational applications of these novel models of the human inner ear.Item Hair-bearing human skin generated entirely from pluripotent stem cells(Springer Nature, 2020-06) Lee, Jiyoon; Rabbani, Cyrus C.; Gao, Hongyu; Steinhart, Matthew R.; Woodruff, Benjamin M.; Pflum, Zachary E.; Kim, Alexander; Heller, Stefan; Liu, Yunlong; Shipchandler, Taha Z.; Koehler, Karl R.; Otolaryngology -- Head and Neck Surgery, School of MedicineThe skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain1,2. Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met3-9. Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.Item Mapping oto-pharyngeal development in a human inner ear organoid model(The Company of Biologists, 2023) Steinhart, Matthew R.; van der Valk, Wouter H.; Osorio, Daniel; Serdy, Sara A.; Zhang, Jingyuan; Nist-Lund, Carl; Kim, Jin; Moncada-Reid, Cynthia; Sun, Liang; Lee, Jiyoon; Koehler, Karl R.; Otolaryngology -- Head and Neck Surgery, School of MedicineInner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.Item An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity(Springer Nature, 2021) Zhou, Zhuolong; Van der Jeught, Kevin; Fang, Yuanzhang; Yu, Tao; Li, Yujing; Ao, Zheng; Liu, Sheng; Zhang, Lu; Yang, Yang; Eyvani, Haniyeh; Cox, Mary L.; Wang, Xiyu; He, Xiaoming; Ji, Guang; Schneider, Bryan P.; Guo, Feng; Wan, Jun; Zhang, Xinna; Lu, Xiongbin; Medical and Molecular Genetics, School of MedicineIn breast cancer, genetic heterogeneity, the lack of actionable targets and immune evasion all contribute to the limited clinical response rates to immune checkpoint blockade therapy. Here, we report a high-throughput screen based on the functional interaction of mouse- or patient-derived breast tumour organoids and tumour-specific cytotoxic T cells for the identification of epigenetic inhibitors that promote antigen presentation and potentiate T-cell-mediated cytotoxicity. We show that the epigenetic inhibitors GSK-LSD1, CUDC-101 and BML-210, identified by the screen, display antitumour activities in orthotopic mammary tumours in mice, that they upregulate antigen presentation mediated by the major histocompatibility complex class I on breast tumour cells and that treatment with BML-210 substantially sensitized breast tumours to the inhibitor of the checkpoint programmed death-1. Standardized measurements of tumour-cell killing activity facilitated by tumour-organoid-T-cell screens may help with the identification of candidate immunotherapeutics for a range of cancers.Item Protocol to calculate the synergy of drug combinations in organoids and primary cells from murine tumors(Elsevier, 2024-10-01) Eisenbarth, David; Ku, Bomin; Lim, Dae-Sik; Medicine, School of MedicineEvaluating the synergy of drug combinations is crucial in advancing treatment regimens. Here, we present a protocol to establish primary cells and organoids from murine tumors and calculate drug synergy. We describe all necessary cell culture procedures, including establishing primary cultures, setting up treatment groups, and detecting cell viability. We then outline how to calculate the synergy score based on a bioinformatical pipeline. This approach applies to any disease model in which a combination of drugs needs to be evaluated. For complete details on the use and execution of this protocol, please refer to Ku et al.1.