- Browse by Subject
Browsing by Subject "Optical mapping"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Apamin Induces Early Afterdepolarizations and Torsades de Pointes Ventricular Arrhythmia From Failing Rabbit Ventricles Exhibiting Secondary Rises in Intracellular Calcium(Elsevier, 2013) Chang, Po-Cheng; Hsieh, Yu-Cheng; Hsueh, Chia-Hsiang; Weiss, James N.; Lin, Shien-Fong; Chen, Peng-Sheng; Medicine, School of MedicineBackground: A secondary rise of intracellular Ca(2+) (Cai) and an upregulation of apamin-sensitive K(+) current (I(KAS)) are characteristic findings of failing ventricular myocytes. We hypothesize that apamin, a specific I(KAS) blocker, may induce torsades de pointes (TdP) ventricular arrhythmia from failing ventricles exhibiting secondary rises of Cai. Objective: To test the hypothesis that small conductance Ca(2+) activated IKAS maintains repolarization reserve and prevents ventricular arrhythmia in a rabbit model of heart failure (HF). Methods: We performed Langendorff perfusion and optical mapping studies in 7 hearts with pacing-induced HF and in 5 normal control rabbit hearts. Atrioventricular block was created by cryoablation to allow pacing at slow rates. Results: The left ventricular ejection fraction reduced from 69.1% [95% confidence interval 62.3%-76.0%] before pacing to 30.4% [26.8%-34.0%] (N = 7; P < .001) after pacing. The corrected QT interval in failing ventricles was 337 [313-360] ms at baseline and 410 [381-439] ms after applying 100 nmol/L of apamin (P = .01). Apamin induced early afterdepolarizations (EADs) in 6 ventricles, premature ventricular beats (PVBs) in 7 ventricles, and polymorphic ventricular tachycardia consistent with TdP in 4 ventricles. The earliest activation site of EADs and PVBs always occurred at the site with long action potential duration and large amplitude of the secondary rises of Ca(i). Apamin induced secondary rises of Ca(i) in 1 nonfailing ventricle, but no EAD or TdP were observed. Conclusions: In HF ventricles, apamin induces EADs, PVBs, and TdP from areas with secondary rises of Ca(i). I(KAS) is important in maintaining repolarization reserve and preventing TdP in HF ventricles.Item Apamin Sensitive Potassium Current Modulates Action Potential Duration Restitution and Arrhythmogenesis of Failing Rabbit Ventricles(American Heart Association, 2013) Hsieh, Yu-Cheng; Chang, Po-Cheng; Hsueh, Chia-Hsiang; Lee, Young Soo; Shen, Changyu; Weiss, James N.; Chen, Zhenhui; Ai, Tomohiko; Lin, Shien-Fong; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Apamin-sensitive K currents (I(KAS)) are upregulated in heart failure. We hypothesize that apamin can flatten action potential duration restitution (APDR) curve and can reduce ventricular fibrillation duration in failing ventricles. Methods and results: We simultaneously mapped membrane potential and intracellular Ca (Ca(i)) in 7 rabbit hearts with pacing-induced heart failure and in 7 normal hearts. A dynamic pacing protocol was used to determine APDR at baseline and after apamin (100 nmol/L) infusion. Apamin did not change APD(80) in normal ventricles, but prolonged APD(80) in failing ventricles at either long (≥300 ms) or short (≤170 ms) pacing cycle length, but not at intermediate pacing cycle length. The maximal slope of APDR curve was 2.03 (95% confidence interval, 1.73-2.32) in failing ventricles and 1.26 (95% confidence interval, 1.13-1.40) in normal ventricles at baseline (P=0.002). After apamin administration, the maximal slope of APDR in failing ventricles decreased to 1.43 (95% confidence interval, 1.01-1.84; P=0.018), whereas no significant changes were observed in normal ventricles. During ventricular fibrillation in failing ventricles, the number of phase singularities (baseline versus apamin, 4.0 versus 2.5), dominant frequency (13.0 versus 10.0 Hz), and ventricular fibrillation duration (160 versus 80 s) were all significantly (P<0.05) decreased by apamin. Conclusions: Apamin prolongs APD at long and short, but not at intermediate pacing cycle length in failing ventricles. I(KAS) upregulation may be antiarrhythmic by preserving the repolarization reserve at slow heart rate, but is proarrhythmic by steepening the slope of APDR curve, which promotes the generation and maintenance of ventricular fibrillation.Item Moderate Hypothermia (33 °C) Decreases the Susceptibility to Pacing-Induced Ventricular Fibrillation Compared with Severe Hypothermia (30 °C) by Attenuating Spatially Discordant Alternans in Isolated Rabbit Hearts(Taiwan Society of Cardiology, 2014-09) Hsieh, Yu-Cheng; Lin, Shien-Fong; Huang, Jin-Long; Hung, Chen-Ying; Lin, Jiunn-Cherng; Liao, Ying-Chieh; Lo, Chu-Pin; Wang, Kuo-Yang; Wu, Tsu-Juey; Department of Medicine, IU School of MedicineBackground Severe hypothermia (SH, 30 °C) increases the risk of pacing-induced ventricular fibrillation (PIVF) by enhancing spatially discordant alternans (SDA). Whether moderate hypothermia (MH, 33 °C), which is clinically used for therapeutic hypothermia, also facilitates SDA remains unclear. We hypothesized that MH attenuates SDA occurrence compared with that achieved by SH, and decreases the susceptibility of PIVF. Methods Using an optical mapping system, action potential duration (APD)/conduction velocity restitutions and thresholds of APD alternans were determined by S1 pacing in Langendorff-perfused isolated rabbit hearts. In the MH group (n = 7), S1 pacing was performed at baseline (37 °C), after 5-min MH, and after 5-min rewarming (37 °C). In the SH group (n = 9), pacing was also performed at baseline (37 °C), after 5-min SH, and after 5-min rewarming (37 °C). The thresholds of APD alternans were defined as the longest S1 pacing cycle length at which APD alternans were detected. Results Although the thresholds of APD alternans were not different between the MH (273 ± 46 ms) and the SH (300 ± 35 ms) (p = 0.281) groups, SDA threshold was shorter (at a faster heart rate) during MH (228 ± 33 ms) than that during SH (289 ± 42 ms) (p = 0.028). At APD alternans threshold, SH hearts showed more SDA than that during MH (SH: 7 hearts, MH: 2 hearts, p = 0.049). SDA could be induced in all 9 SH hearts (100%), while only 4 MH hearts (57%) had SDA (p = 0.029). The PIVF inducibility during SH (44 ± 53%) was higher than that during MH (0%) (p = 0.043). Conclusions Compared with SH, the MH group showed greater attenuation of SDA and decreased the susceptibility of PIVF. Therefore, MH is safer as a procedural guideline for use in clinical therapeutic hypothermia than SH.Item Neonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasis(MDPI, 2022-07-04) George, Rajani M.; Guo, Shuai; Firulli, Beth A.; Rubart, Michael; Firulli, Anthony B.; Pediatrics, School of MedicineThe cardiac conduction system, a network of specialized cells, is required for the functioning of the heart. The basic helix loop helix factors Hand1 and Hand2 are required for cardiac morphogenesis and have been implicated in cardiac conduction system development and maintenance. Here we use embryonic and post-natal specific Cre lines to interrogate the role of Hand1 and Hand2 in the function of the murine cardiac conduction system. Results demonstrate that loss of HAND1 in the post-natal conduction system does not result in any change in electrocardiogram parameters or within the ventricular conduction system as determined by optical voltage mapping. Deletion of Hand2 within the post-natal conduction system results in sex-dependent reduction in PR interval duration in these mice, suggesting a novel role for HAND2 in regulating the atrioventricular conduction. Surprisingly, results show that loss of both HAND factors within the post-natal conduction system does not cause any consistent changes in cardiac conduction system function. Deletion of Hand2 in the embryonic left ventricle results in inconsistent prolongation of PR interval and susceptibility to atrial arrhythmias. Thus, these results suggest a novel role for HAND2 in homeostasis of the murine cardiac conduction system and that HAND1 loss potentially rescues the shortened HAND2 PR phenotype.Item Pro-arrhythmic Effect of Blocking the Small Conductance Calcium Activated Potassium Channel in Isolated Canine Left Atrium(Elsevier, 2013) Hsueh, Chia-Hsiang; Chang, Po-Cheng; Hsieh, Yu-Cheng; Reher, Thomas; Chen, Peng-Sheng; Lin, Shien-Fong; Medicine, School of MedicineBackground: Small conductance calcium activated potassium (SKCa) channels are voltage insensitive and are activated by intracellular calcium. Genome-wide association studies revealed that a variant of SKCa is associated with lone atrial fibrillation in humans. Roles of SKCa in atrial arrhythmias remain unclear. Objective: To determine roles of SKCa in atrial arrhythmias. Methods: Optical mapping using the isolated canine left atrium was performed. The optical action potential duration (APD) and induction of arrhythmia were evaluated before and after the addition of specific SKCa blockers-apamin or UCL-1684. Results: SKCa blockade significantly increased APD₈₀ (188 ± 19 ms vs 147 ± 11 ms; P<.001). The pacing cycle length thresholds to induce 2:2 alternans, and wave breaks were prolonged by SKCa blockade. Increased APD heterogeneity was observed after the SKCa blockade, as measured by the difference between the maximum and the minimum APD (39 ± 4 ms vs 26 ± 5 ms; P<.05), by standard deviation (12.43 ± 2.36 ms vs 7.49 ± 1.47 ms; P<.001), or by coefficient of variation (6.68% ± 0.97% vs 4.90% ± 0.84%; P<.05). No arrhythmia was induced at baseline by an S1-S2 protocol. After SKCa blockade, 4 of 6 atria developed arrhythmia. Conclusions: SKCa blockade promotes arrhythmia and prolongs the pacing cycle length threshold of 2:2 alternans and wave breaks in the canine left atrium. The proarrhythmic effect could be attributed to increased APD heterogeneity in the canine left atrium. This study provides supportive evidence of genome-wide association studies showing association of KCNN3 and lone atrial fibrillation.Item Sex-specific IKAS activation in rabbit ventricles with drug-induced QT prolongation(Elsevier, 2021) Wu, Adonis Z.; Chen, Mu; Yin, Dechun; Everett, Thomas H., IV.; Chen, Zhenhui; Rubart, Michael; Weiss, James N.; Qu, Zhilin; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Female sex is a known risk factor for drug-induced long QT syndrome (diLQTS). We recently demonstrated a sex difference in apamin-sensitive small-conductance Ca2+-activated K+ current (IKAS) activation during β-adrenergic stimulation. Objective: The purpose of this study was to test the hypothesis that there is a sex difference in IKAS in the rabbit models of diLQTS. Methods: We evaluated the sex difference in ventricular repolarization in 15 male and 22 female Langendorff-perfused rabbit hearts with optical mapping techniques during atrial pacing. HMR1556 (slowly activating delayed rectifier K+ current [IKs] blocker), E4031 (rapidly activating delayed rectifier K+ current [IKr] blocker) and sea anemone toxin (ATX-II, late Na+ current [INaL] activator) were used to simulate types 1-3 long QT syndrome, respectively. Apamin, an IKAS blocker, was then added to determine the magnitude of further QT prolongation. Results: HMR1556, E4031, and ATX-II led to the prolongation of action potential duration at 80% repolarization (APD80) in both male and female ventricles at pacing cycle lengths of 300-400 ms. Apamin further prolonged APD80 (pacing cycle length 350 ms) from 187.8±4.3 to 206.9±7.1 (P=.014) in HMR1556-treated, from 209.9±7.8 to 224.9±7.8 (P=.003) in E4031-treated, and from 174.3±3.3 to 188.1±3.0 (P=.0002) in ATX-II-treated female hearts. Apamin did not further prolong the APD80 in male hearts. The Cai transient duration (CaiTD) was significantly longer in diLQTS than baseline but without sex differences. Apamin did not change CaiTD. Conclusion: We conclude that IKAS is abundantly increased in female but not in male ventricles with diLQTS. Increased IKAS helps preserve the repolarization reserve in female ventricles treated with IKs and IKr blockers or INaL activators.Item Small conductance calcium-activated potassium current and the mechanism of atrial arrhythmia in mice with dysfunctional melanocyte-like cells(Elsevier, 2016-07) Tsai, Wei-Chung; Chan, Yi-Hsin; Hsueh, Chia-Hsiang; Everett, Thomas H., IV; Chang, Po-Cheng; Choi, Eue-Keun; Olaopa, Michael A.; Lin, Shien-Fong; Shen, Changyu; Kudela, Maria Aleksandra; Rubart-von der Lohe, Michael; Chen, Zhenhui; Jadiya, Pooja; Tomar, Dhanendra; Luvison, Emily; Anzalone, Nicholas; Anzalone, Nicholas; Patel, Vickas V.; Chen, Peng-Sheng; Medicine, School of MedicineBACKGROUND: The melanin synthesis enzyme dopachrome tautomerase (Dct) regulates intracellular Ca(2+) in melanocytes. Homozygous Dct knockout (Dct(-/-)) adult mice are vulnerable to atrial arrhythmias (AA). OBJECTIVE: The purpose of this study was to determine whether apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) currents are upregulated in Dct(-/-) mice and contribute to AA. METHODS: Optical mapping was used to study the membrane potential of the right atrium in Langendorff perfused Dct(-/-) (n = 9) and Dct(+/-) (n = 9) mice. RESULTS: Apamin prolonged action potential duration (APD) by 18.8 ms (95% confidence interval [CI] 13.4-24.1 ms) in Dct(-/-) mice and by 11.5 ms (95% CI 5.4-17.6 ms) in Dct(+/-) mice at a pacing cycle length of 150 ms (P = .047). The pacing cycle length threshold to induce APD alternans was 48 ms (95% CI 34-62 ms) for Dct(-/-) mice and 21 ms (95% CI 12-29 ms) for Dct(+/-) mice (P = .002) at baseline, and it was 35 ms (95% CI 21-49 ms) for Dct(-/-) mice and 22 ms (95% CI 11-32 ms) for Dct(+/-) mice (P = .025) after apamin administration. Apamin prolonged post-burst pacing APD by 8.9 ms (95% CI 3.9-14.0 ms) in Dct(-/-) mice and by 1.5 ms (95% CI 0.7-2.3 ms) in Dct(+/-) mice (P = .005). Immunoblot and quantitative polymerase chain reaction analyses showed that protein and transcripts levels of SK1 and SK3 were increased in the right atrium of Dct(-/-) mice. AA inducibility (89% vs 11%; P = .003) and duration (281 seconds vs 66 seconds; P = .008) were greater in Dct(-/-) mice than in Dct(+/-) mice at baseline, but not different (22% vs 11%; P = 1.00) after apamin administration. Five of 8 (63%) induced atrial fibrillation episodes in Dct(-/-) mice had focal drivers. CONCLUSION: Apamin-sensitive SK current upregulation in Dct(-/-) mice plays an important role in the mechanism of AA.Item Testosterone does not shorten action potential duration in Langendorff perfused rabbit ventricles(Elsevier, 2023-10) Ueoka, Akira; Sung, Yen-Ling; Liu, Xiao; Rosenberg, Carine; Chen, Zhenhui; Everett, Thomas H, IV; Rubart, Michael; Tisdale, James E.; Chen, Peng-Sheng; Pediatrics, School of MedicineBackground: Women have longer baseline QT intervals than men. Because previous studies showed that testosterone and 5α-dihydrotestosterone shorten the ventricular action potential duration (APD) in animal models, differential testosterone concentrations may account for the sex differences in QT interval. Objective: The purpose of this study was to test the hypothesis that testosterone shortens the APD in Langendorff-perfused rabbit ventricles. Methods: We performed optical mapping studies in hearts with or without testosterone administration. Acute studies included 26 hearts using 2 different protocols, including 17 without and 9 with atrioventricular (AV) block. For chronic studies, we implanted testosterone pellets subcutaneously in 7 female rabbits for 2-3 weeks before optical mapping studies during complete AV block. Six rabbits without pellet implantation served as controls. Results: The hearts in the acute studies were paced with a pacing cycle length (PCL) of 200-300 ms and mapped at baseline and after administration of 1 nM, 10 nM, 100 nM, and 3 μM of testosterone. There was no shortening of APD80 at any PCL. Instead, a lengthening of APD80 was noted at higher concentrations. There were no sex differences in testosterone responses. In chronic studies, heart rates were 136 ± 5 bpm before and 148 ± 9 bpm after (P = .10) while QTc intervals were 314 ± 9 ms before and 317 ± 99 ms after (P = .69) testosterone pellet implantation, respectively. Overall, ventricular APD80 in the pellet group was longer than in the control group at 300- to 700-ms PCL. Conclusion: Testosterone does not shorten ventricular repolarization in rabbit hearts.Item Testosterone does not shorten action potential duration in Langendorff-perfused rabbit ventricles(Elsevier, 2022-11) Ueoka, Akira; Sung, Yen-Ling; Liu , Xiao; Rosenberg, Carine; Chen, Zhenhui; Everett, Thomas H., IV; Rubart , Michael; Tisdale, James E.; Chen, Peng-Sheng; Medicine, School of MedicineBackground Women have longer baseline QT intervals than men. Because previous studies showed that testosterone and 5α-dihydrotestosterone shorten the ventricular action potential duration (APD) in animal models, differential testosterone concentrations may account for the sex differences in QT interval. Objective The purpose of this study was to test the hypothesis that testosterone shortens the APD in Langendorff-perfused rabbit ventricles. Methods We performed optical mapping studies in hearts with or without testosterone administration. Acute studies included 26 hearts using 2 different protocols, including 17 without and 9 with atrioventricular (AV) block. For chronic studies, we implanted testosterone pellets subcutaneously in 7 female rabbits for 2–3 weeks before optical mapping studies during complete AV block. Six rabbits without pellet implantation served as controls. Results The hearts in the acute studies were paced with a pacing cycle length (PCL) of 200–300 ms and mapped at baseline and after administration of 1 nM, 10 nM, 100 nM, and 3 μM of testosterone. There was no shortening of APD80 at any PCL. Instead, a lengthening of APD80 was noted at higher concentrations. There were no sex differences in testosterone responses. In chronic studies, heart rates were 136 ± 5 bpm before and 148 ± 9 bpm after (P = .10) while QTc intervals were 314 ± 9 ms before and 317 ± 99 ms after (P = .69) testosterone pellet implantation, respectively. Overall, ventricular APD80 in the pellet group was longer than in the control group at 300- to 700-ms PCL. Conclusion Testosterone does not shorten ventricular repolarization in rabbit hearts.