- Browse by Subject
Browsing by Subject "Oncogenes"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Bottom-up, integrated -omics analysis identifies broadly dosage-sensitive genes in breast cancer samples from TCGA(PLOS, 2019-01-17) Kechavarzi, Bobak D.; Wu, Huanmei; Doman, Thompson N.; Biohealth Informatics, School of Informatics and ComputingThe massive genomic data from The Cancer Genome Atlas (TCGA), including proteomics data from Clinical Proteomic Tumor Analysis Consortium (CPTAC), provides a unique opportunity to study cancer systematically. While most observations are made from a single type of genomics data, we apply big data analytics and systems biology approaches by simultaneously analyzing DNA amplification, mRNA and protein abundance. Using multiple genomic profiles, we have discovered widespread dosage compensation for the extensive aneuploidy observed in TCGA breast cancer samples. We do identify 11 genes that show strong correlation across all features (DNA/mRNA/protein) analogous to that of the well-known oncogene HER2 (ERBB2). These genes are generally less well-characterized regarding their role in cancer and we advocate their further study. We also discover that shRNA knockdown of these genes has an impact on cancer cell growth, suggesting a vulnerability that could be used for cancer therapy. Our study shows the advantages of systematic big data methodologies and also provides future research directions.Item CGPE: an integrated online server for Cancer Gene and Pathway Exploration(Oxford University Press, 2021) Liu, Jiannan; Dong, Chuanpeng; Liu, Yunlong; Wu, Huanmei; BioHealth Informatics, School of Informatics and ComputingSummary: Cancer Gene and Pathway Explorer (CGPE) is developed to guide biological and clinical researchers, especially those with limited informatics and programming skills, performing preliminary cancer-related biomedical research using transcriptional data and publications. CGPE enables three user-friendly online analytical and visualization modules without requiring any local deployment. The GenePub HotIndex applies natural language processing, statistics and association discovery to provide analytical results on gene-specific PubMed publications, including gene-specific research trends, cancer types correlations, top-related genes and the WordCloud of publication profiles. The OnlineGSEA enables Gene Set Enrichment Analysis (GSEA) and results visualizations through an easy-to-follow interface for public or in-house transcriptional datasets, integrating the GSEA algorithm and preprocessed public TCGA and GEO datasets. The preprocessed datasets ensure gene sets analysis with appropriate pathway alternation and gene signatures. The CellLine Search presents evidence-based guidance for cell line selections with combined information on cell line dependency, gene expressions and pathway activity maps, which are valuable knowledge to have before conducting gene-related experiments. In a nutshell, the CGPE webserver provides a user-friendly, visual, intuitive and informative bioinformatics tool that allows biomedical researchers to perform efficient analyses and preliminary studies on in-house and publicly available bioinformatics data.Item Characterization of the MDM2 binding regions of ribosomal protein L5(2010-07-20T16:29:38Z) Plummer, Kevin D.; Lu, Hua; Goebl, Mark, 1958-; Hurley, Thomas D., 1961-The MDM2-p53 feedback loop is a well-characterized pathway. p53 is a transcription factor and regulates the transcriptional expression of genes that encode proteins responsible for cellular senescence, cell cycle arrest, apoptosis, and DNA repair. Various cellular stresses can result in p53 activation, including hypoxia, DNA damage by agents such as UV or IR, oncogenic signaling, nucleotide depletion and nucleolar stress from perturbation of ribosomal biogenesis. Under normal conditions, MDM2’s role in the pathway is to inhibit p53 function by directly binding to this protein and facilitating its ubiquitylation and 26S proteasome-mediated degradation. Under stressful cellular conditions, certain proteins interact with and rescue MDM2’s inhibition of p53. For example, upon exposure to small amounts of Actinomycin D, rRNA transcript synthesis is stalled resulting in the release of various ribosomal proteins including RPL5, RPL11 and RPL23; each of which has been shown to bind MDM2 within its central acidic domain and inhibit its ability to destabilize p53. Although the RPL5 binding region of MDM2 have been mapped in prior investigations, the MDM2-binding region(s) of RPL5 have yet to be characterized. By employing RPL5 deletion mutagenesis and in vitro GST-fusion protein-protein association assays with purified proteins, this dissertation attempts to elucidate those regions of RPL5 that may interact with MDM2. Normalizing RPL5-WT to 1.00, our study reveals that the basic N and C-terminals of RPL5 appear to bind with MDM2 while RPL5’s central region displays negligible binding to the central acidic domain of MDM2. Also, the possible meanings of these RPL5 MDM2 binding domains are discussed along with their utilization in potential future applications.Item Epigenetic aberrations of gene expression in a rat model of hepatocellular carcinoma(Taylor & Francis, 2022) Boycott, Cayla; Beetch, Megan; Yang, Tony; Lubecka, Katarzyna; Ma, Yuexi; Zhang, Jiaxi; Kurzava Kendall, Lucinda; Ullmer, Melissa; Ramsey, Benjamin S.; Torregrosa-Allen, Sandra; Elzey, Bennett D.; Cox, Abigail; Lanman, Nadia Atallah; Hui, Alisa; Villanueva, Nathaniel; de Conti, Aline; Huan, Tao; Pogribny, Igor; Stefanska, Barbara; Anatomy, Cell Biology and Physiology, School of MedicineHepatocellular carcinoma (HCC) is mostly triggered by environmental and life-style factors and may involve epigenetic aberrations. However, a comprehensive documentation of the link between the dysregulated epigenome, transcriptome, and liver carcinogenesis is lacking. In the present study, Fischer-344 rats were fed a choline-deficient (CDAA, cancer group) or choline-sufficient (CSAA, healthy group) L-amino acid-defined diet. At the end of 52 weeks, transcriptomic alterations in livers of rats with HCC tumours and healthy livers were investigated by RNA sequencing. DNA methylation and gene expression were assessed by pyrosequencing and quantitative reverse-transcription PCR (qRT-PCR), respectively. We discovered 1,848 genes that were significantly differentially expressed in livers of rats with HCC tumours (CDAA) as compared with healthy livers (CSAA). Upregulated genes in the CDAA group were associated with cancer-related functions, whereas macronutrient metabolic processes were enriched by downregulated genes. Changes of highest magnitude were detected in numerous upregulated genes that govern key oncogenic signalling pathways, including Notch, Wnt, Hedgehog, and extracellular matrix degradation. We further detected perturbations in DNA methylating and demethylating enzymes, which was reflected in decreased global DNA methylation and increased global DNA hydroxymethylation. Four selected upregulated candidates, Mmp12, Jag1, Wnt4, and Smo, demonstrated promoter hypomethylation with the most profound decrease in Mmp12. MMP12 was also strongly overexpressed and hypomethylated in human HCC HepG2 cells as compared with primary hepatocytes, which coincided with binding of Ten-eleven translocation 1 (TET1). Our findings provide comprehensive evidence for gene expression changes and dysregulated epigenome in HCC pathogenesis, potentially revealing novel targets for HCC prevention/treatment.Item Mutational landscape of RNA-binding proteins in human cancers(Taylor & Francis, 2018-01-02) Neelamraju, Yaseswini; Gonzalez-Perez, Abel; Bhat-Nakshatri, Poornima; Nakshatri, Harikrishna; Janga, Sarath Chandra; BioHealth Informatics, School of Informatics and ComputingRNA Binding Proteins (RBPs) are a class of post-transcriptional regulatory molecules which are increasingly documented to be dysfunctional in cancer genomes. However, our current understanding of these alterations is limited. Here, we delineate the mutational landscape of ∼1300 RBPs in ∼6000 cancer genomes. Our analysis revealed that RBPs have an average of ∼3 mutations per Mb across 26 cancer types. We identified 281 RBPs to be enriched for mutations (GEMs) in at least one cancer type. GEM RBPs were found to undergo frequent frameshift and inframe deletions as well as missense, nonsense and silent mutations when compared to those that are not enriched for mutations. Functional analysis of these RBPs revealed the enrichment of pathways associated with apoptosis, splicing and translation. Using the OncodriveFM framework, we also identified more than 200 candidate driver RBPs that were found to accumulate functionally impactful mutations in at least one cancer. Expression levels of 15% of these driver RBPs exhibited significant difference, when transcriptome groups with and without deleterious mutations were compared. Functional interaction network of the driver RBPs revealed the enrichment of spliceosomal machinery, suggesting a plausible mechanism for tumorogenesis while network analysis of the protein interactions between RBPs unambiguously revealed the higher degree, betweenness and closeness centrality for driver RBPs compared to non-drivers. Analysis to reveal cancer-specific Ribonucleoprotein (RNP) mutational hotspots showed extensive rewiring even among common drivers between cancer types. Knockdown experiments on pan-cancer drivers such as SF3B1 and PRPF8 in breast cancer cell lines, revealed cancer subtype specific functions like selective stem cell features, indicating a plausible means for RBPs to mediate cancer-specific phenotypes. Hence, this study would form a foundation to uncover the contribution of the mutational spectrum of RBPs in dysregulating the post-transcriptional regulatory networks in different cancer types.Item Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth(Wiley, 2021) Lepore, Alessio; Choy, Pui Man; Lee, Nathan C. W.; Carella, Maria Annunziata; Favicchio, Rosy; Briones-Orta, Marco A.; Glaser, Shannon S.; Alpini, Gianfranco; D’Santos, Clive; Tooze, Reuben M.; Lorger, Mihaela; Syn, Wing-Kin; Papakyriakou, Athanasios; Giamas, Georgios; Bubici, Concetta; Papa, Salvatore; Medicine, School of MedicineBackground and aims: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of the c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and therefore the key downstream effectors of this pathway, remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signaling in ICC that could open up therapeutic opportunities. Approach and results: Using loss-of-function and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumors, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 through all-trans retinoic acid, a Food and Drug Administration-approved drug, impairs the growth of both cultured and xenografted ICC cells. Conclusions: Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation through PIN1 inhibition.Item PSIP1/p75 promotes tumorigenicity in breast cancer cells by promoting the transcription of cell cycle genes(Oxford University Press, 2017-10-01) Singh, Deepak K.; Gholamalamdari, Omid; Jadaliha, Mahdieh; Li, Xiao Ling; Lin, Yo-Chuen; Zhang, Yang; Guang, Shuomeng; Hashemikhabir, Seyedsasan; Tiwari, Saumya; Zhu, Yuelin J.; Khan, Abid; Thomas, Anu; Chakraborty, Arindam; Macias, Virgilia; Balla, Andre K.; Bhargava, Rohit; Janga, Sarath Chandra; Ma, Jian; Prasanth, Supriya G.; Lal, Ashish; Prasanth, Kannanganattu V.; BioHealth Informatics, School of Informatics and ComputingBreast cancer (BC) is a highly heterogeneous disease, both at the pathological and molecular level, and several chromatin-associated proteins play crucial roles in BC initiation and progression. Here, we demonstrate the role of PSIP1 (PC4 and SF2 interacting protein)/p75 (LEDGF) in BC progression. PSIP1/p75, previously identified as a chromatin-adaptor protein, is found to be upregulated in basal-like/triple negative breast cancer (TNBC) patient samples and cell lines. Immunohistochemistry in tissue arrays showed elevated levels of PSIP1 in metastatic invasive ductal carcinoma. Survival data analyses revealed that the levels of PSIP1 showed a negative association with TNBC patient survival. Depletion of PSIP1/p75 significantly reduced the tumorigenicity and metastatic properties of TNBC cell lines while its over-expression promoted tumorigenicity. Further, gene expression studies revealed that PSIP1 regulates the expression of genes controlling cell-cycle progression, cell migration and invasion. Finally, by interacting with RNA polymerase II, PSIP1/p75 facilitates the association of RNA pol II to the promoter of cell cycle genes and thereby regulates their transcription. Our findings demonstrate an important role of PSIP1/p75 in TNBC tumorigenicity by promoting the expression of genes that control the cell cycle and tumor metastasis.Item Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells(Elsevier, 2021) Beetch, Megan; Boycott, Cayla; Harandi-Zadeh, Sadaf; Yang, Tony; Martin, Benjamin J. E.; Dixon-McDougall, Thomas; Ren, Kevin; Gacad, Allison; Dupuis, John H.; Ullmer, Melissa; Lubecka, Katarzyna; Yada, Rickey Y.; Brown, Carolyn J.; Howe, LeAnn J.; Stefanska, Barbara; Anatomy, Cell Biology and Physiology, School of MedicineTranscription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anti-cancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2 and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding were accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anti-cancer action of stilbenoid polyphenols.Item Understanding the biological function of phosphatases of regenerating liver, from biochemistry to physiology(2014-07) Bai, Yunpeng; Zhang, Zhong-Yin; Quilliam, Lawrence; Shou, Weinian; Dong, X. CharliePhosphatases of regenerating liver, consisting of PRL-1, PRL-2 and PRL-3, belong to a novel protein tyrosine phosphatases subfamily, whose overexpression promotes cell proliferation, migration and invasion and contributes to tumorigenesis and metastasis. However, although great efforts have been made to uncover the biological function of PRLs, limited knowledge is available on the underlying mechanism of PRLs’ actions, therapeutic value by targeting PRLs, as well as the physiological function of PRLs in vivo. To answer these questions, we first screened a phage display library and identified p115 RhoGAP as a novel PRL-1 binding partner. Mechanistically, we demonstrated that PRL-1 activates RhoA and ERK1/2 by decreasing the association between active RhoA with GAP domain of p115 RhoGAP, and displacing MEKK1 from the SH3 domain of p115 RhoGAP, respectively, leading to enhanced cell proliferation and migration. Secondly, structure-based virtual screening was employed to discover small molecule inhibitors blocking PRL-1 trimer formation which has been suggested to play an important role for PRL-1 mediated oncogenesis. We identified Cmpd-43 as a novel PRL-1 trimer disruptor. Structural study demonstrated the binding mode of PRL-1 with the trimer disruptor. Most importantly, cellular data revealed that Cmpd-43 inhibited PRL-1 induced cell proliferation and migration in breast cancer cell line MDA-MB-231 and lung cancer cell line H1299. Finally, in order to investigate the physiological function of PRLs, we generated mouse knockout models for Prl-1, Prl-2 and Prl-3. Although mice deficient for Prl-1 and Prl-3 were normally developed, Prl-2-null mice displayed growth retardation, impaired male reproductive ability and insufficient hematopoiesis. To further investigate the in vivo function of Prl-1, we generated Prl-1-/-/Prl-2+/- and Prl-1+/-/Prl-2-/- mice. Similar to Prl-2 deficient male mice, Prl-1-/-/Prl-2+/- males also have impaired spermatogenesis and reproductivity. More strikingly, Prl-1+/-/Prl-2-/- mice are completely infertile, suggesting that, in addition to PRL-2, PRL-1 also plays an important role in maintaining normal testis function. In summary, these studies demonstrated for the first time that PRL-1 activates ERK1/2 and RhoA through the novel interaction with p115 RhoGAP, targeting PRL-1 trimer interface is a novel anti-cancer therapeutic treatment and both PRL-1 and PRL-2 contribute to spermatogenesis and male mice reproductivity.