- Browse by Subject
Browsing by Subject "Oligonucleotide array sequence analysis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse tissue in vivo(Springer Nature, 2021) Xuan, Yi; Ghatak, Subhadip; Clark, Andrew; Li, Zhigang; Khanna, Savita; Pak, Dongmin; Agarwal, Mangilal; Roy, Sashwati; Duda, Peter; Sen, Chandan K.; Surgery, School of MedicineTissue nanotransfection (TNT) is an electromotive gene transfer technology that was developed to achieve tissue reprogramming in vivo. This protocol describes how to fabricate the required hardware, commonly referred to as a TNT chip, and use it for in vivo TNT. Silicon hollow-needle arrays for TNT applications are fabricated in a standardized and reproducible way. In <1 s, these silicon hollow-needle arrays can be used to deliver plasmids to a predetermined specific depth in murine skin in response to pulsed nanoporation. Tissue nanotransfection eliminates the need to use viral vectors, minimizing the risk of genomic integration or cell transformation. The TNT chip fabrication process typically takes 5-6 d, and in vivo TNT takes 30 min. This protocol does not require specific expertise beyond a clean room equipped for basic nanofabrication processes.Item Integrated Analysis of Global mRNA and Protein Expression Data in HEK293 Cells Overexpressing PRL-1(Public Library of Science, 2013-09-03) Dumaual, Carmen M.; Steere, Boyd A.; Walls, Chad D.; Wang, Mu; Zhang, Zhong-Yin; Randall, Stephen K.; Biology, School of ScienceBackground: The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood. Methodology: To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293). Principal findings: Overexpression of PRL-1 led to several significant changes in the mRNA and protein expression profiles of HEK293 cells. The differentially expressed gene set was highly enriched in genes involved in cytoskeletal remodeling, integrin-mediated cell-matrix adhesion, and RNA recognition and splicing. In particular, members of the Rho signaling pathway and molecules that converge on this pathway were heavily influenced by PRL-1 overexpression, supporting observations from previous studies that link PRL-1 to the Rho GTPase signaling network. In addition, several genes not previously associated with PRL-1 were found to be significantly altered by its expression. Most notable among these were Filamin A, RhoGDIα, SPARC, hnRNPH2, and PRDX2. Conclusions and significance: This systems-level approach sheds new light on the molecular networks underlying PRL-1 action and presents several novel directions for future, hypothesis-based studies.Item SIMPL Enhancement of Tumor Necrosis Factor-α Dependent p65-MED1 Complex Formation Is Required for Mammalian Hematopoietic Stem and Progenitor Cell Function(Public Library of Science, 2013-04-22) Zhao, Weina; Breese, Erin; Bowers, Allison; Hoggatt, Jonathan; Pelus, Louis M.; Broxmeyer, Hal E.; Goebl, Mark; Harrington, Maureen A.; Biochemistry and Molecular Biology, School of MedicineSignificant insight into the signaling pathways leading to activation of the Rel transcription factor family, collectively termed NF-κB, has been gained. Less well understood is how subsets of NF-κB-dependent genes are regulated in a signal specific manner. The SIMPL protein (signaling molecule that interacts with mouse pelle-like kinase) is required for full Tumor Necrosis Factor-α (TNFα) induced NF-κB activity. We show that SIMPL is required for steady-state hematopoiesis and the expression of a subset of TNFα induced genes whose products regulate hematopoietic cell activity. To gain insight into the mechanism through which SIMPL modulates gene expression we focused on the Tnf gene, an immune response regulator required for steady-state hematopoiesis. In response to TNFα SIMPL localizes to the Tnf gene promoter where it modulates the initiation of Tnf gene transcription. SIMPL binding partners identified by mass spectrometry include proteins involved in transcription and the interaction between SIMPL and MED1 was characterized in more detail. In response to TNFα, SIMPL is found in p65-MED1 complexes where SIMPL enhances p65/MED1/SIMPL complex formation. Together our results indicate that SIMPL functions as a TNFα-dependent p65 co-activator by facilitating the recruitment of MED1 to p65 containing transcriptional complexes to control the expression of a subset of TNFα-induced genes.