- Browse by Subject
Browsing by Subject "Object detection"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Clinician and Visitor Activity Patterns in an Intensive Care Unit Room: A Study to Examine How Ambient Monitoring Can Inform the Measurement of Delirium Severity and Escalation of Care(MDPI, 2024-10-14) Nalaie, Keivan; Herasevich, Vitaly; Heier, Laura M.; Pickering, Brian W.; Diedrich, Daniel; Lindroth, Heidi; Center for Health Innovation and Implementation Science, School of MedicineThe early detection of the acute deterioration of escalating illness severity is crucial for effective patient management and can significantly impact patient outcomes. Ambient sensing technology, such as computer vision, may provide real-time information that could impact early recognition and response. This study aimed to develop a computer vision model to quantify the number and type (clinician vs. visitor) of people in an intensive care unit (ICU) room, study the trajectory of their movement, and preliminarily explore its relationship with delirium as a marker of illness severity. To quantify the number of people present, we implemented a counting-by-detection supervised strategy using images from ICU rooms. This was accomplished through developing three methods: single-frame, multi-frame, and tracking-to-count. We then explored how the type of person and distribution in the room corresponded to the presence of delirium. Our designed pipeline was tested with a different set of detection models. We report model performance statistics and preliminary insights into the relationship between the number and type of persons in the ICU room and delirium. We evaluated our method and compared it with other approaches, including density estimation, counting by detection, regression methods, and their adaptability to ICU environments.Item EffCNet: An Efficient CondenseNet for Image Classification on NXP BlueBox(Science Publishing Group, 2021) Kalgaonkar, Priyank; El-Sharkawy, Mohamed; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyIntelligent edge devices with built-in processors vary widely in terms of capability and physical form to perform advanced Computer Vision (CV) tasks such as image classification and object detection, for example. With constant advances in the field of autonomous cars and UAVs, embedded systems and mobile devices, there has been an ever-growing demand for extremely efficient Artificial Neural Networks (ANN) for real-time inference on these smart edge devices with constrained computational resources. With unreliable network connections in remote regions and an added complexity of data transmission, it is of an utmost importance to capture and process data locally instead of sending the data to cloud servers for remote processing. Edge devices on the other hand, offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources. In this paper, we propose a novel deep convolutional neural network architecture called EffCNet which is an improved and an efficient version of CondenseNet Convolutional Neural Network (CNN) for edge devices utilizing self-querying data augmentation and depthwise separable convolutional strategies to improve real-time inference performance as well as reduce the final trained model size, trainable parameters, and Floating-Point Operations (FLOPs) of EffCNet CNN. Furthermore, extensive supervised image classification analyses are conducted on two benchmarking datasets: CIFAR-10 and CIFAR-100, to verify real-time inference performance of our proposed CNN. Finally, we deploy these trained weights on NXP BlueBox which is an intelligent edge development platform designed for self-driving vehicles and UAVs, and conclusions will be extrapolated accordingly.Item Enhancing Precision of Object Detectors: Bridging Classification and Localization Gaps for 2D and 3D Models(2024-05) Ravi, Niranjan; El-Sharkawy, Mohamed; Rizkalla, Maher E.; Li, Lingxi; King, Brian S.Artificial Intelligence (AI) has revolutionized and accelerated significant advancements in various fields such as healthcare, finance, education, agriculture and the development of autonomous vehicles. We are rapidly approaching Level 5 Autonomy due to recent developments in autonomous technology, including self-driving cars, robot navigation, smart traffic monitoring systems, and dynamic routing. This success has been made possible due to Deep Learning technologies and advanced Computer Vision (CV) algorithms. With the help of perception sensors such as Camera, LiDAR and RADAR, CV algorithms enable a self-driving vehicle to interact with the environment and make intelligent decisions. Object detection lays the foundations for various applications, such as collision and obstacle avoidance, lane detection, pedestrian and vehicular safety, and object tracking. Object detection has two significant components: image classification and object localization. In recent years, enhancing the performance of 2D and 3D object detectors has spiked interest in the research community. This research aims to resolve the drawbacks associated with localization loss estimation of 2D and 3D object detectors by addressing the bounding box regression problem, addressing the class imbalance issue affecting the confidence loss estimation, and finally proposing a dynamic cross-model 3D hybrid object detector with enhanced localization and confidence loss estimation. This research aims to address challenges in object detectors through four key contributions. In the first part, we aim to address the problems associated with the image classification component of 2D object detectors. Class imbalance is a common problem associated with supervised training. Common causes are noisy data, a scene with a tiny object surrounded by background pixels, or a dense scene with too many objects. These scenarios can produce many negative samples compared to positive ones, affecting the network learning and reducing the overall performance. We examined these drawbacks and proposed an Enhanced Hard Negative Mining (EHNM) approach, which utilizes anchor boxes with 20% to 50% overlap and positive and negative samples to boost performance. The efficiency of the proposed EHNM was evaluated using Single Shot Multibox Detector (SSD) architecture on the PASCAL VOC dataset, indicating that the detection accuracy of tiny objects increased by 3.9% and 4% and the overall accuracy improved by 0.9%. To address localization loss, our second approach investigates drawbacks associated with existing bounding box regression problems, such as poor convergence and incorrect regression. We analyzed various cases, such as when objects are inclusive of one another, two objects with the same centres, two objects with the same centres and similar aspect ratios. During our analysis, we observed existing intersections over Union (IoU) loss and its variant’s failure to address them. We proposed two new loss functions, Improved Intersection Over Union (IIoU) and Balanced Intersection Over Union (BIoU), to enhance performance and minimize computational efforts. Two variants of the YOLOv5 model, YOLOv5n6 and YOLOv5s, were utilized to demonstrate the superior performance of IIoU on PASCAL VOC and CGMU datasets. With help of ROS and NVIDIA’s devices, inference speed was observed in real-time. Extensive experiments were performed to evaluate the performance of BIoU on object detectors. The evaluation results indicated MASK_RCNN network trained on the COCO dataset, YOLOv5n6 network trained on SKU-110K and YOLOv5x trained on the custom e-scooter dataset demonstrated 3.70% increase on small objects, 6.20% on 55% overlap and 9.03% on 80% overlap. In the earlier parts, we primarily focused on 2D object detectors. Owing to its success, we extended the scope of our research to 3D object detectors in the later parts. The third portion of our research aims to solve bounding box problems associated with 3D rotated objects. Existing axis-aligned loss functions suffer a performance gap if the objects are rotated. We enhanced the earlier proposed IIoU loss by considering two additional parameters: the objects’ Z-axis and rotation angle. These two parameters aid in localizing the object in 3D space. Evaluation was performed on LiDAR and Fusion methods on 3D KITTI and nuScenes datasets. Once we addressed the drawbacks associated with confidence and localization loss, we further explored ways to increase the performance of cross-model 3D object detectors. We discovered from previous studies that perception sensors are volatile to harsh environmental conditions, sunlight, and blurry motion. In the final portion of our research, we propose a hybrid 3D cross-model detection network (MAEGNN) equipped with MaskedAuto Encoders (MAE) and Graph Neural Networks (GNN) along with earlier proposed IIoU and ENHM. The performance evaluation on MAEGNN on the KITTI validation dataset and KITTI test set yielded a detection accuracy of 69.15%, 63.99%, 58.46% and 40.85%, 37.37% on 3D pedestrians with overlap of 50%. This developed hybrid detector overcomes the challenges of localization error and confidence estimation and outperforms many state-of-art 3D object detectors for autonomous platforms.Item RCNN-SliceNet: A Slice and Cluster Approach for Nuclei Centroid Detection in Three-Dimensional Fluorescence Microscopy Images(IEEE, 2021) Wu, Liming; Han, Shuo; Chen, Alain; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.; Electrical and Computer Engineering, School of Engineering and TechnologyRobust and accurate nuclei centroid detection is important for the understanding of biological structures in fluorescence microscopy images. Existing automated nuclei localization methods face three main challenges: (1) Most of object detection methods work only on 2D images and are difficult to extend to 3D volumes; (2) Segmentation-based models can be used on 3D volumes but it is computational expensive for large microscopy volumes and they have difficulty distinguishing different instances of objects; (3) Hand annotated ground truth is limited for 3D microscopy volumes. To address these issues, we present a scalable approach for nuclei centroid detection of 3D microscopy volumes. We describe the RCNN-SliceNet to detect 2D nuclei centroids for each slice of the volume from different directions and 3D agglomerative hierarchical clustering (AHC) is used to estimate the 3D centroids of nuclei in a volume. The model was trained with the synthetic microscopy data generated using Spatially Constrained Cycle-Consistent Adversarial Networks (SpCycle-GAN) and tested on different types of real 3D microscopy data. Extensive experimental results demonstrate that our proposed method can accurately count and detect the nuclei centroids in a 3D microscopy volume.