- Browse by Subject
Browsing by Subject "ORP1L"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Recruitment and function of ORP1L on the Coxiella burnetii parasitophorous vacuole(2017-12-07) Justis, Anna Victoria; Gilk, Stacey D.; Spinola, Stanley M.; Nelson, David; Arrizabalaga, Gustavo A.; Harrington, Maureen A.Coxiella burnetii, the zoonotic agent of human Q fever and chronic endocarditis, is an obligate intracellular bacterial pathogen. The Coxiella intracellular niche, a large, lysosome-like parasitophorous vacuole (PV), is essential for bacterial survival and replication. There is growing evidence that host cell cholesterol trafficking plays a critical role in PV development and maintenance, prompting an examination of the role of cholesterol-binding host protein ORP1L (Oxysterol binding protein-Related Protein 1, Long) during infection. ORP1L is a multi-functional cholesterol-binding protein involved in late endosome/lysosome (LEL) trafficking, formation of membrane contact sites between LEL and the endoplasmic reticulum (ER), and cholesterol transfer from LEL to the ER. ORP1L localizes to the PV at novel membrane contact sites between the ER and the PV membrane. Ectopically expressed ORP1L in Coxiella-infected cells localizes to the PV membrane early during infection, before significant PV expansion and independent of other PV-localized proteins. Further, the N-terminal ORP1L Ankyrin repeats are both necessary and sufficient for PV localization, suggesting that protein-protein interactions, and not protein-lipid interactions, are primarily involved in PV association. Coxiella employs a Type IVB Secretion System (T4BSS) to translocate effector proteins into the host cytoplasm and manipulate various cellular functions. ORP1L is not found on the PV of a Coxiella mutant lacking a functional T4BSS, indicating a secreted bacterial protein is likely responsible for ORP1L recruitment. We identified a Coxiella mutant with a transposon insertion in CBU_0352 that exhibits a 50% decrease in ORP1L recruitment, suggesting that Coxiella CBU_0352 interacts directly or indirectly with ORP1L. Finally, we found that ORP1L depletion using siRNA alters PV dynamics, resulting in smaller yet more fusogenic Coxiella PVs. Together, these data suggest that ORP1L is specifically recruited to the PV, where it plays a novel role in Coxiella PV development and interactions between the PV and the host cell.Item The Role of Mammalian Lipid Transport Protein ORP1 During Coxiella Burnetii Infection(2022-05) Schuler, Baleigh Elizabeth; Gilk, Stacey D.; Arrizabalaga, Gustavo; Spinola, Stanley; Harrington, Maureen; Day, RichardCoxiella burnetii is an intracellular bacterium that causes the human disease Q fever. C. burnetii is transmitted from infected animals to humans through inhalation of infectious droplets. Acute Q fever is a flu-like illness lasting 10-14 days. Patients often have respiratory symptoms and present with pneumonia. Patients with suppressed immune systems or valvular heart disease can develop chronic Q fever, which causes endocarditis and vasculitis long after initial infection. Chronic Q fever is difficult to treat, and if untreated, is typically fatal. Currently, the United States lacks any vaccine for Q fever. In order to better prevent and treat this disease, it is important to understand how C. burnetii interacts with mammalian cells. Within the host cell, C. burnetii forms a large, acidic Coxiella-containing vacuole (CCV) and uses a Type 4B secretion system (T4SS) to secrete effector proteins into the host cell cytoplasm. While the CCV membrane is rich in sterols, cholesterol accumulation in the CCV is bacteriolytic, suggesting that C. burnetii regulation of lipid transport is critical for infection. The mammalian lipid transport protein ORP1L localizes to the CCV membrane and mediates CCV-ER membrane contact sites. ORP1L functions in lipid transport, including cholesterol efflux from late endosomes/lysosomes. Its sister isoform ORP1S binds cholesterol but localizes to the cytoplasm and nucleus. In ORP1- null cells, we found that CCVs were smaller than in wildtype cells, highlighting the importance of ORP1 in CCV development. CCVs in ORP1-null cells had higher cholesterol content than CCVs in wildtype cells, suggesting ORP1 functions in cholesterol efflux from the CCV. ORP1-null MH-S cells do not accumulate lipid droplets upon C. burnetii infection, supporting our hypothesis that ORP1 promotes cholesterol transfer from the CCV to the ER, as lipid droplets form from neutral lipids in the ER. While the absence of ORP1 led to a C. burnetii growth defect in MH-S cells, there was no growth defect in HeLa cells. Together, our data demonstrate that C. burnetii uses the host sterol transport protein ORP1 to promote CCV development, potentially by using ORP1 to facilitate cholesterol efflux from the CCV to diminish the bacteriolytic effects of cholesterol.