- Browse by Subject
Browsing by Subject "Nuclease"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks(American Society for Biochemistry and Molecular Biology, 2017-02-17) Kim, Hyun-Suk; Nickoloff, Jac A.; Wu, Yuehan; Williamson, Elizabeth A.; Sidhu, Gurjit Singh; Reinart, Brian L.; Jaiswal, Aruna S.; Srinivasan, Gayathri; Patel, Bhavita; Kong, Kimi; Burma, Sandeep; Lee, Suk-Hee; Hromas, Robert A.; Department of Biochemistry & Molecular Biology, IU School of MedicineReplication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5'-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5' end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5'-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5' end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.Item Nuclease-based editing in the porcine genome : a strategy to facilitate porcine-to human xenotransplantation(2017-04-18) Butler, James R.; Tector, A. Joseph; White, Kenneth E.; Schmidt, C. Max; Radovich, MilanSolid organ transplantation is severely limited by a shortage of available donor allografts. Pig-to-human xenotransplantation offers a potential solution to this growing problem. For xenotransplantation to achieve clinical relevance, both immunologic and physiologic barriers must be understood. Genetic modification of pigs has proven to be a valuable means of both studying and eliminating these barriers. The present body of work describes a method for greatly increasing the efficiency and precision of genome editing within the porcine genome. By combining non-integrating selection and homologous recombination of exogenous oligonucleotides, a method for rapidly creating genetic modification without reliance on phenotypic sorting was achieved. Furthermore this work employs the technique of CRISPR/Cas9-directed mutagenesis to create and analyze several new animal models of porcine-to-human xenotransplantation with respect to both immunologic and physiologic parameters. First, Isoglobotrihexosylceramide -a controversial glycan to the field of xenotransplantation- was studied in a knockout model and found not to affect human-anti-porcine humoral reactions. Second, a new combination of glycan modifications is described that significantly lowers the human anti-porcine humoral immune response. This model animal suggests that glycan-deletion alone will be sufficient to promote clinical application, and that conventional immunosuppression will be successful in mediating the human cellular response. Finally, two potential physiologic barriers to xenotransplantation are studied in genetically modified model animals. Xenogenic consumption of human platelets was studied across hepatic and renal organ systems; xenogenic platelet consumption was reduced by glycan modifications to the porcine liver while human platelet sequestration was not identified in the study of renal endothelium. Porcine FcRN –an essential receptor expressed in kidneys to maintain serum proteostasis- was studied as a final potential barrier to pig-to human renal transplantation. Because albumin is the primary driver of serum oncotic pressure, the protein-protein interaction of endogenous porcine FcRN and human albumin was studied. Porcine FcRN was found capable of binding human albumin under physiologic parameters. In summary, the results of the present work suggest that the salient barriers to clinical xenotransplantation have been removed and that porcine-to human renal transplantation may soon offer an answer to the current organ shortage.Item The yeast Hrq1 helicase stimulates Pso2 translesion nuclease activity and thereby promotes DNA interstrand crosslink repair(Elsevier, 2020-07-03) Rogers, Cody M.; Lee, Chun-Ying; Parkins, Samuel; Buehler, Nicholas J.; Wenzel, Sabine; Martínez-Márquez, Francisco; Takagi, Yuichiro; Myong, Sua; Bochman, Matthew L.; Biochemistry and Molecular Biology, School of MedicineDNA interstrand crosslink (ICL) repair requires a complex network of DNA damage response pathways. Removal of the ICL lesions is vital, as they are physical barriers to essential DNA processes that require the separation of duplex DNA, such as replication and transcription. The Fanconi anemia (FA) pathway is the principal mechanism for ICL repair in metazoans and is coupled to DNA replication. In Saccharomyces cerevisiae, a vestigial FA pathway is present, but ICLs are predominantly repaired by a pathway involving the Pso2 nuclease, which is hypothesized to use its exonuclease activity to digest through the lesion to provide access for translesion polymerases. However, Pso2 lacks translesion nuclease activity in vitro, and mechanistic details of this pathway are lacking, especially relative to FA. We recently identified the Hrq1 helicase, a homolog of the disease-linked enzyme RecQ-like helicase 4 (RECQL4), as a component of Pso2-mediated ICL repair. Here, using genetic, biochemical, and biophysical approaches, including single-molecule FRET (smFRET)- and gel-based nuclease assays, we show that Hrq1 stimulates the Pso2 nuclease through a mechanism that requires Hrq1 catalytic activity. Importantly, Hrq1 also stimulated Pso2 translesion nuclease activity through a site-specific ICL in vitro We noted that stimulation of Pso2 nuclease activity is specific to eukaryotic RecQ4 subfamily helicases, and genetic and biochemical data suggest that Hrq1 likely interacts with Pso2 through their N-terminal domains. These results advance our understanding of FA-independent ICL repair and establish a role for the RecQ4 helicases in the repair of these detrimental DNA lesions.