- Browse by Subject
Browsing by Subject "Notch signaling"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma(American Association for Cancer Research, 2016-03-01) Delgado-Calle, Jesus; Anderson, Judith; Cregor, Meloney D.; Hiasa, Masahiro; Chirgwin, John M.; Carlesso, Nadia; Yoneda, Toshiyuki; Mohammad, Khalid S.; Plotkin, Lilian I.; Roodman, G. David; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineIn multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.Item Combining Intravital Fluorescent Microscopy (IVFM) with Genetic Models to Study Engraftment Dynamics of Hematopoietic Cells to Bone Marrow Niches(Journal of Visualized Experiments, 2017-03-21) Wang, Lin; Kamocka, Malgorzata M.; Zollman, Amy; Carlesso, Nadia; Pediatrics, School of MedicineIncreasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions1,2. Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny3,4,5. New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function6,7,8. Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)9 and RBPJ knock-out mice (lacking canonical Notch signaling)10 are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment.Item The Earliest T-Precursors in the Mouse Embryo Are Susceptible to Leukemic Transformation(Frontiers Media, 2021-04-29) Ding, Jixin; Cardoso, Angelo A.; Yoshimoto, Momoko; Kobayashi, Michihiro; Medicine, School of MedicineAcute lymphoblastic leukemia (ALL) is the most common malignancy in pediatric patients. About 10–15% of pediatric ALL belong to T-cell ALL (T-ALL), which is characterized by aggressive expansion of immature T-lymphoblasts and is categorized as high-risk leukemia. Leukemia initiating cells represent a reservoir that is responsible for the initiation and propagation of leukemia. Its perinatal origin has been suggested in some childhood acute B-lymphoblastic and myeloblastic leukemias. Therefore, we hypothesized that child T-ALL initiating cells also exist during the perinatal period. In this study, T-ALL potential of the hematopoietic precursors was found in the para-aortic splanchnopleura (P-Sp) region, but not in the extraembryonic yolk sac (YS) of the mouse embryo at embryonic day 9.5. We overexpressed the Notch intracellular domain (NICD) in the P-Sp and YS cells and transplanted them into lethally irradiated mice. NICD-overexpressing P-Sp cells rapidly developed T-ALL while YS cells failed to display leukemia propagation despite successful NICD induction. These results suggest a possible role of fetal-derived T-cell precursors as leukemia-initiating cells.Item Metastasis and cancer associated fibroblasts: taking it up a NOTCH(Frontiers Media, 2024-01-10) Ghosh, Argha; Mitra, Anirban K.; Medical and Molecular Genetics, School of MedicineMetastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.Item Notch signaling regulates Hey2 expression in a spatiotemporal dependent manner during cardiac morphogenesis and trabecular specification(Nature Publishing Group, 2018-02-08) Miao, Lianjie; Li, Jingjing; Li, Jun; Tian, Xueying; Lu, Yangyang; Hu, Saiyang; Shieh, David; Kanai, Ryan; Zhou, Bo-yang; Zhou, Bin; Liu, Jiandong; Firulli, Anthony B.; Martin, James F.; Singer, Harold; Zhou, Bin; Xin, Hongbo; Wu, Mingfu; Pediatrics, School of MedicineHey2 gene mutations in both humans and mice have been associated with multiple cardiac defects. However, the currently reported localization of Hey2 in the ventricular compact zone cannot explain the wide variety of cardiac defects. Furthermore, it was reported that, in contrast to other organs, Notch doesn't regulate Hey2 in the heart. To determine the expression pattern and the regulation of Hey2, we used novel methods including RNAscope and a Hey2 CreERT2 knockin line to precisely determine the spatiotemporal expression pattern and level of Hey2 during cardiac development. We found that Hey2 is expressed in the endocardial cells of the atrioventricular canal and the outflow tract, as well as at the base of trabeculae, in addition to the reported expression in the ventricular compact myocardium. By disrupting several signaling pathways that regulate trabeculation and/or compaction, we found that, in contrast to previous reports, Notch signaling and Nrg1/ErbB2 regulate Hey2 expression level in myocardium and/or endocardium, but not its expression pattern: weak expression in trabecular myocardium and strong expression in compact myocardium. Instead, we found that FGF signaling regulates the expression pattern of Hey2 in the early myocardium, and regulates the expression level of Hey2 in a Notch1 dependent manner.Item Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone(PNAS, 2015-02-03) Tu, Xiaolin; Delgado-Calle, Jesus; Condon, Keith W.; Maycas, Marta; Zhang, Huajia; Carlesso, Nadia; Taketo, Makoto M.; Burr, David B.; Plotkin, Lilian I.; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineOsteocytes, >90% of the cells in bone, lie embedded within the mineralized matrix and coordinate osteoclast and osteoblast activity on bone surfaces by mechanisms still unclear. Bone anabolic stimuli activate Wnt signaling, and human mutations of components along this pathway underscore its crucial role in bone accrual and maintenance. However, the cell responsible for orchestrating Wnt anabolic actions has remained elusive. We show herein that activation of canonical Wnt signaling exclusively in osteocytes [dominant active (da)βcat(Ot) mice] induces bone anabolism and triggers Notch signaling without affecting survival. These features contrast with those of mice expressing the same daß-catenin in osteoblasts, which exhibit decreased resorption and perinatal death from leukemia. daßcat(Ot) mice exhibit increased bone mineral density in the axial and appendicular skeleton, and marked increase in bone volume in cancellous/trabecular and cortical compartments compared with littermate controls. daßcat(Ot) mice display increased resorption and formation markers, high number of osteoclasts and osteoblasts in cancellous and cortical bone, increased bone matrix production, and markedly elevated periosteal bone formation rate. Wnt and Notch signaling target genes, osteoblast and osteocyte markers, and proosteoclastogenic and antiosteoclastogenic cytokines are elevated in bones of daßcat(Ot) mice. Further, the increase in RANKL depends on Sost/sclerostin. Thus, activation of osteocytic β-catenin signaling increases both osteoclasts and osteoblasts, leading to bone gain, and is sufficient to activate the Notch pathway. These findings demonstrate disparate outcomes of β-catenin activation in osteocytes versus osteoblasts and identify osteocytes as central target cells of the anabolic actions of canonical Wnt/β-catenin signaling in bone.Item Retinal Wnt signaling defect in a zebrafish fetal alcohol spectrum disorder model(PLOS, 2018-08-01) Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.; Biology, School of ScienceFetal alcohol spectrum disorder caused by prenatal alcohol exposure includes ocular abnormalities (microphthalmia, photoreceptor dysfunction, cataracts). Zebrafish embryos exposed to ethanol from gastrulation through somitogenesis show severe ocular defects, including microphthalmia and photoreceptor differentiation defects. Ethanol-treated zebrafish had an enlarged ciliary marginal zone (CMZ) relative to the retina size and reduced Müller glial cells (MGCs). Ethanol exposure produced immature photoreceptors with increased proliferation, indicating cell cycle exit failure. Signaling mechanisms in the CMZ were affected by embryonic ethanol exposure, including Wnt signaling in the CMZ, Notch signaling and neurod gene expression. Retinoic acid or folic acid co-supplementation with ethanol rescued Wnt signaling and retinal differentiation. Activating Wnt signaling using GSK3 inhibitor (LSN 2105786; Eli Lilly and Co.) restored retinal cell differentiation pathways. Ethanol exposed embryos were treated with Wnt agonist, which rescued Wnt-active cells in the CMZ, Notch-active cells in the retina, proliferation, and photoreceptor terminal differentiation. Our results illustrate the critical role of Wnt signaling in ethanol-induced retinal defects.