- Browse by Subject
Browsing by Subject "Nonparametric tests"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nonparametric analysis of nonhomogeneous multistate processes with clustered observations(Biometrics, 2020-06-24) Bakoyannis, GiorgosFrequently, clinical trials and observational studies involve complex event history data with multiple events. When the observations are independent, the analysis of such studies can be based on standard methods for multistate models. However, the independence assumption is often violated, such as in multicenter studies, which makes standard methods improper. This work addresses the issue of nonparametric estimation and two-sample testing for the population-averaged transition and state occupation probabilities under general multistate models with cluster-correlated, right-censored, and/or left-truncated observations. The proposed methods do not impose assumptions regarding the within-cluster dependence, allow for informative cluster size, and are applicable to both Markov and non-Markov processes. Using empirical process theory, the estimators are shown to be uniformly consistent and to converge weakly to tight Gaussian processes. Closed-form variance estimators are derived, rigorous methodology for the calculation of simultaneous confidence bands is proposed, and the asymptotic properties of the nonparametric tests are established. Furthermore, I provide theoretical arguments for the validity of the nonparametric cluster bootstrap, which can be readily implemented in practice regardless of how complex the underlying multistate model is. Simulation studies show that the performance of the proposed methods is good, and that methods that ignore the within-cluster dependence can lead to invalid inferences. Finally, the methods are illustrated using data from a multicenter randomized controlled trial.Item Nonparametric inference for Markov processes with missing absorbing state(Statistica Sinica, 2019) Bakoyannis, Giorgos; Zhang, Ying; Yiannoutsos, Constantin T.This study examines nonparametric estimations of a transition proba- bility matrix of a nonhomogeneous Markov process with a nite state space and a partially observed absorbing state. We impose a missing-at-random assumption and propose a computationally e cient nonparametric maximum pseudolikelihood estimator (NPMPLE). The estimator depends on a parametric model that is used to estimate the probability of each absorbing state for the missing observations based, potentially, on auxiliary data. For the latter model, we propose a formal goodness- of- t test based on a residual process. Using modern empirical process theory, we show that the estimator is uniformly consistent and converges weakly to a tight mean-zero Gaussian random eld. We also provide a methodology for constructing simultaneous con dence bands. Simulation studies show that the NPMPLE works well with small sample sizes and that it is robust against some degree of misspec- i cation of the parametric model for the missing absorbing states. The method is illustrated using HIV data from sub-Saharan Africa to estimate the transition probabilities of death and disengagement from HIV care.