- Browse by Subject
Browsing by Subject "Non-rainfall water"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Contributions of Soil Moisture and Groundwater to Non-Rainfall Water Formation in the Namib Desert(2019-08) Adhikari, Bishwodeep; Wang, Lixin; Li, Lin; Jacinthe, Pierre-AndréNon-rainfall waters such as fog and dew are considered as important source of water in drylands, and the knowledge of possible sources of its formation is very important to make future predictions. Prior studies have suggested the presence of radiation fog in drylands; however, its formation mechanism still remains unclear. There have been earlier studies on the effects of fog on soil moisture dynamics and groundwater recharge. On the contrary, no research has yet been conducted to understand the contribution of soil moisture and groundwater to fog formation. This study, therefore, for the first time intends to examine such possibility in a fog-dominated dryland ecosystem, the Namib Desert. The study was conducted at three sites representing two different land forms (sand dunes and gravel plains) in the Namib Desert. This thesis is divided into two parts: the first part examines evidences of fog formation through water vapor movement using field observations, and the second part simulates water vapor transport using HYDRUS-1D model. In the first part of the study, soil moisture, soil temperature and air temperature data were analyzed, and the relationships between these variables were taken as one of the key indicators for the linkage between soil water and fog formation. The analysis showed that increase in soil moisture generally corresponds to similar increase in air or soil temperature near the soil surface, which implied that variation in soil moisture might be the result of water vapor movement (evaporated soil moisture or groundwater) from lower depths to the soil surface. In the second part of the study, surface fluxes of water vapor were simulated using the HYDRUS-1D model to explore whether the available surface flux was sufficient to support fog formation. The actual surface flux and cumulative evaporation obtained from the model showed positive surface fluxes of water vapor. Based on the field observations and the HYDRUS-1D model results, it can be concluded that water vapor from soil layers and groundwater is transported through the vadose zone to the surface and this water vapor likely contributes to the formation of non-rainfall waters in fog-dominated drylands, like the Namib Desert.Item A Stable Isotope Approach to Investigative Ecohydrological Processes in Namibia(2018-12) Kaseke, Kudzai Farai; Wang, Lixin; Jacinthe, Pierre Andre; Gilhooly, William P.; Wilson, Jeffrey; Soderberg, KeirDrylands cover 40% of the earth’s terrestrial surface supporting over 2 billion people, the majority of whom reside in developing nations characterised by high population growth rates. This imposes pressure on the already limited water resources and in some dryland regions such as southern Africa, the origins and dynamics of rainfall are not well understood. Research has also tended to focus on factors limiting (e.g., rainfall) than sustaining productivity in drylands. However, non-rainfall water (NRW) e.g., fog and dew can supplement and/or exceed rainfall in these environments and could potentially be exploited as potable water resources. Much remains unknown in terms of NRW formation mechanisms, origins, evolution, potability and potential impact of global climate change on these NRW dependent ecosystems. Using Namibia as a proxy for drylands and developing nations, this dissertation applies stable isotopes of water (δ2H, δ18O, δ17O and d-excess), cokriging and trajectory analysis methods to understand ecohydrological processes. Results suggest that locally generated NRW may be a regular occurrence even in coastal areas such as the Namib Desert, and that what may appear as a single fog event may consist of different fog types co-occurring. These results are important because NRW responses to global climate change is dependent on the source, groundwater vs. ocean, and being able to distinguish the two will allow for more accurate modelling. I also demonstrate, that fog and dew formation are controlled by different fractionation processes, paving the way for plant water use strategy studies and modelling responses to global climate change. The study also suggests that current NRW harvesting technologies could be improved and that the potability of this water could raise some public health concerns related to trace metal and biological contamination. At the same time, the dissertation concludes that global precipitation isoscapes do not capture local isotope variations in Namibia, suggesting caution when applied to drylands and developing nations. Finally, the dissertation also reports for the first time, δ17O precipitation results for Namibia, novel isotope methods to differentiate synoptic from local droughts and suggests non-negligible moisture contributions from the Atlantic Ocean due to a possible sub-tropical Atlantic Ocean dipole.