- Browse by Subject
Browsing by Subject "Non-homologous end joining"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The endonuclease EEPD1 mediates synthetic lethality in RAD52-depleted BRCA1 mutant breast cancer cells(BMC, 2017) Hromas, Robert; Kim, Hyun-Suk; Sidhu, Gurjit; Williamson, Elizabeth; Jaiswal, Aruna; Totterdale, Taylor A.; Nole, Jocelyn; Lee, Suk-Hee; Nickoloff, Jac A.; Kong, Kimi Y.; Biochemistry and Molecular Biology, School of MedicineBackground Proper repair and restart of stressed replication forks requires intact homologous recombination (HR). HR at stressed replication forks can be initiated by the 5′ endonuclease EEPD1, which cleaves the stalled replication fork. Inherited or acquired defects in HR, such as mutations in breast cancer susceptibility protein-1 (BRCA1) or BRCA2, predispose to cancer, including breast and ovarian cancers. In order for these HR-deficient tumor cells to proliferate, they become addicted to a bypass replication fork repair pathway mediated by radiation repair protein 52 (RAD52). Depleting RAD52 can cause synthetic lethality in BRCA1/2 mutant cancers by an unknown molecular mechanism. Methods We hypothesized that cleavage of stressed replication forks by EEPD1 generates a fork repair intermediate that is toxic when HR-deficient cells cannot complete repair with the RAD52 bypass pathway. To test this hypothesis, we applied cell survival assays, immunofluorescence staining, DNA fiber and western blot analyses to look at the correlation between cell survival and genome integrity in control, EEPD1, RAD52 and EEPD1/RAD52 co-depletion BRCA1-deficient breast cancer cells. Results Our data show that depletion of EEPD1 suppresses synthetic lethality, genome instability, mitotic catastrophe, and hypersensitivity to stress of replication of RAD52-depleted, BRCA1 mutant breast cancer cells. Without HR and the RAD52-dependent backup pathway, the BRCA1 mutant cancer cells depleted of EEPD1 skew to the alternative non-homologous end-joining DNA repair pathway for survival. Conclusion This study indicates that the mechanism of synthetic lethality in RAD52-depleted BRCA1 mutant cancer cells depends on the endonuclease EEPD1. The data imply that EEPD1 cleavage of stressed replication forks may result in a toxic intermediate when replication fork repair cannot be completed. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0912-8) contains supplementary material, which is available to authorized users.Item Impact of Optimized Ku–DNA Binding Inhibitors on the Cellular and In Vivo DNA Damage Response(MDPI, 2024-09-26) Mendoza-Munoz, Pamela L.; Deshwar Kushwaha, Narva; Chauhan, Dineshsinha; Gacem, Karim Ben Ali; Garrett, Joy E.; Dynlacht, Joseph R.; Charbonnier, Jean-Baptiste; Gavande, Navnath S.; Turchi, John J.; Medicine, School of MedicineBackground: DNA-dependent protein kinase (DNA-PK) is a validated cancer therapeutic target involved in DNA damage response (DDR) and non-homologous end-joining (NHEJ) repair of DNA double-strand breaks (DSBs). Ku serves as a sensor of DSBs by binding to DNA ends and activating DNA-PK. Inhibition of DNA-PK is a common strategy to block DSB repair and improve efficacy of ionizing radiation (IR) therapy and radiomimetic drug therapies. We have previously developed Ku-DNA binding inhibitors (Ku-DBis) that block in vitro and cellular NHEJ activity, abrogate DNA-PK autophosphorylation, and potentiate cellular sensitivity to IR. Results and Conclusions: Here we report the discovery of oxindole Ku-DBis with improved cellular uptake and retained potent Ku-inhibitory activity. Variable monotherapy activity was observed in a panel of non-small cell lung cancer (NSCLC) cell lines, with ATM-null cells being the most sensitive and showing synergy with IR. BRCA1-deficient cells were resistant to single-agent treatment and antagonistic when combined with DSB-generating therapies. In vivo studies in an NSCLC xenograft model demonstrated that the Ku-DBi treatment blocked IR-dependent DNA-PKcs autophosphorylation, modulated DDR, and reduced tumor cell proliferation. This represents the first in vivo demonstration of a Ku-targeted DNA-binding inhibitor impacting IR response and highlights the potential therapeutic utility of Ku-DBis for cancer treatment.Item Subgenomic particles in rAAV vectors result from DNA lesion/break and non-homologous end joining of vector genomes(Elsevier, 2022-08-24) Zhang, Junping; Guo, Ping; Yu, Xiangping; Frabutt, Dylan A.; Lam, Anh K.; Mulcrone, Patrick L.; Chrzanowski, Matthew; Firrman, Jenni; Pouchnik, Derek; Sang, Nianli; Diao, Yong; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated virus (rAAV) vectors have been developed for therapeutic treatment of genetic diseases. Current rAAV vectors administered to affected individuals often contain vector DNA-related contaminants. Here we present a thorough molecular analysis of the configuration of non-standard AAV genomes generated during rAAV production using single-molecule sequencing. In addition to the sub-vector genomic-size particles containing incomplete AAV genomes, our results showed that rAAV preparations were contaminated with multiple categories of subgenomic particles with a snapback genome (SBG) configuration or a vector genome with deletions. Through CRISPR and nuclease-based modeling in tissue culture cells, we identified that a potential mechanism leading to formation of non-canonical genome particles occurred through non-homologous end joining of fragmented vector genomes caused by genome lesions or DNA breaks present in the host cells. The results of this study advance our understanding of AAV vectors and provide new clues for improving vector efficiency and safety profiles for use in human gene therapy.