ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Noisy Supervision"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    How Does Bayesian Noisy Self-Supervision Defend Graph Convolutional Networks?
    (Springer, 2022-08) Zhuang, Jun; Al Hasan, Mohammad; Computer and Information Science, School of Science
    In recent years, it has been shown that, compared to other contemporary machine learning models, graph convolutional networks (GCNs) achieve superior performance on the node classification task. However, two potential issues threaten the robustness of GCNs, label scarcity and adversarial attacks. .Intensive studies aim to strengthen the robustness of GCNs from three perspectives, the self-supervision-based method, the adversarial-based method, and the detection-based method. Yet, all of the above-mentioned methods can barely handle both issues simultaneously. In this paper, we hypothesize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian graph noisy self-supervision model, namely GraphNS, to address both issues. Extensive experiments demonstrate that GraphNS can significantly enhance node classification against both label scarcity and adversarial attacks. This enhancement proves to be generalized over four classic GCNs and is superior to the competing methods across six public graph datasets.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University