- Browse by Subject
Browsing by Subject "Nicotinic Agonists"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures(American Physiological Society, 2015-07-15) Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J.; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John V.; Petrache, Irina; Department of Biochemistry & Molecular Biology, IU School of MedicineThe increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.Item Nicotine is more addictive, not more cognitively therapeutic in a neurodevelopmental model of schizophrenia produced by neonatal ventral hippocampal lesions(Wiley Blackwell (Blackwell Publishing), 2014-11) Berg, Sarah A.; Sentir, Alena M.; Cooley, Benjamin S.; Engleman, Eric A.; Chambers, R. Andrew; Department of Psychiatry, IU School of MedicineNicotine dependence is the leading cause of death in the United States. However, research on high rates of nicotine use in mental illness has primarily explained this co-morbidity as reflecting nicotine's therapeutic benefits, especially for cognitive symptoms, equating smoking with 'self-medication'. We used a leading neurodevelopmental model of mental illness in rats to prospectively test the alternative possibility that nicotine dependence pervades mental illness because nicotine is simply more addictive in mentally ill brains that involve developmental hippocampal dysfunction. Neonatal ventral hippocampal lesions (NVHL) have previously been demonstrated to produce post-adolescent-onset, pharmacological, neurobiological and cognitive-deficit features of schizophrenia. Here, we show that NVHLs increase adult nicotine self-administration, potentiating acquisition-intake, total nicotine consumed and drug seeking. Behavioral sensitization to nicotine in adolescence prior to self-administration is not accentuated by NVHLs in contrast to increased nicotine self-administration and behavioral sensitization documented in adult NVHL rats, suggesting periadolescent neurodevelopmental onset of nicotine addiction vulnerability in the NVHL model. Delivering a nicotine regimen approximating the exposure used in the sensitization and self-administration experiments (i.e. as a treatment) to adult rats did not specifically reverse NVHL-induced cortical-hippocampal-dependent cognitive deficits and actually worsened cognitive efficiency after nicotine treatment stopped, generating deficits that resemble those due to NVHLs. These findings represent the first prospective evidence demonstrating a causal link between disease processes in schizophrenia and nicotine addiction. Developmental cortical-temporal limbic dysfunction in mental illness may thus amplify nicotine's reinforcing effects and addiction risk and severity, even while producing cognitive deficits that are not specifically or substantially reversible with nicotine.Item Selective breeding for high alcohol preference increases the sensitivity of the posterior VTA to the reinforcing effects of nicotine(Wiley Blackwell (Blackwell Publishing), 2014-09) Hauser, Sheketha R.; Bracken, Amy L.; Deehan, Gerald A.; Toalston, Jamie E.; Ding, Zheng-Ming; Truitt, William A.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.; Department of Psychiatry, IU School of MedicineThe rate of codependency for alcohol and nicotine is extremely high. Numerous studies have indicated that there is a common genetic association for alcoholism and nicotine dependency. The current experiments examined whether selective breeding for high alcohol preference in rats may be associated with increased sensitivity of the posterior ventral tegmental area (pVTA) to the reinforcing properties of nicotine. In addition, nicotine can directly bind to the serotonin-3 (5-HT3 ) receptor, which has been shown to mediate the reinforcing properties of other drugs of abuse within the pVTA Wistar rats were assigned to groups that were allowed to self-infuse 0, 10, 50, 100, 200, 400 or 800 μM nicotine in two-lever (active and inactive) operant chambers. P rats were allowed to self-infuse 0, 1, 10, 50 or 100 μM nicotine. Co-infusion of 5-HT3 receptor antagonists with nicotine into the pVTA was also determined. P rats self-infused nicotine at lower concentrations than required to support self-administration in Wistar rats. In addition, P rats received more self-infusions of 50 and 100 μM nicotine than Wistar rats; including a 5HT3 receptor antagonist (LY-278,584 or zacopride) with nicotine reduced responding on the active lever. Overall, the data support an association between selective breeding for high alcohol preference and increased sensitivity of the pVTA to the reinforcing properties of nicotine. In addition, the data suggest that activation of 5HT3 receptors may be required to maintain the local reinforcing actions of nicotine within the pVTA.