ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Neurotrophic keratopathy"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Corneal Nerve Assessment by Aesthesiometry: History, Advancements, and Future Directions
    (MDPI, 2024-05-12) Crabtree, Jordan R.; Tannir, Shadia; Tran, Khoa; Boente, Charline S.; Ali, Asim; Borschel, Gregory H.; Surgery, School of Medicine
    The measurement of corneal sensation allows clinicians to assess the status of corneal innervation and serves as a crucial indicator of corneal disease and eye health. Many devices are available to assess corneal sensation, including the Cochet–Bonnet aesthesiometer, the Belmonte Aesthesiometer, the Swiss Liquid Jet Aesthesiometer, and the newly introduced Corneal Esthesiometer Brill. Increasing the clinical use of in vivo confocal microscopy and optical coherence tomography will allow for greater insight into the diagnosis, classification, and monitoring of ocular surface diseases such as neurotrophic keratopathy; however, formal esthesiometric measurement remains necessary to assess the functional status of corneal nerves. These aesthesiometers vary widely in their mode of corneal stimulus generation and their relative accessibility, precision, and ease of clinical use. The development of future devices to optimize these characteristics, as well as further comparative studies between device types should enable more accurate and precise diagnosis and treatment of corneal innervation deficits. The purpose of this narrative review is to describe the advancements in the use of aesthesiometers since their introduction to clinical practice, compare currently available devices for assessing corneal innervation and their relative limitations, and discuss how the assessment of corneal innervation is crucial to understanding and treating pathologies of the ocular surface.
  • Loading...
    Thumbnail Image
    Item
    Corneal Neurotization: Preoperative Patient Workup and Surgical Decision-making
    (Wolters Kluwer, 2023-10-11) Daeschler, Simeon C.; Woo, Jyh Haur; Hussein, Isra; Ali, Asim; Borschel, Gregory H.; Surgery, School of Medicine
    Background: The use of sensory nerve transfers to the anesthetic cornea has transformed the treatment of neurotrophic keratopathy by restoring ocular surface sensation and activating dysfunctional epithelial repair mechanisms. However, despite numerous reports on surgical techniques, there is a scarcity of information on the interdisciplinary management, preoperative assessment, and surgical decision-making, which are equally critical to treatment success. Methods: This Special Topic presents a standardized, interdisciplinary preoperative workup based on our 10-year experience with corneal neurotization in 32 eyes of patients with neurotrophic keratopathy. Results: Our assessment includes a medical history review, ophthalmic evaluation, and systematic facial sensory donor nerve mapping for light touch and pain modalities. This approach enables evidence-based patient selection, optimal surgery timing, and suitable donor nerve identification, including backup options. Conclusions: Based on a decade-long experience, this special topic highlights the importance of interdisciplinary collaboration and provides a practical roadmap for optimizing patient selection and surgical decision-making in patients undergoing corneal neurotization.
  • Loading...
    Thumbnail Image
    Item
    Schwann Cells Are Key Regulators of Corneal Epithelial Renewal
    (Association for Research in Vision and Ophthalmology (ARVO), 2023) Mirmoeini, Kaveh; Tajdaran, Kiana; Zhang, Jennifer; Gordon, Tessa; Ali, Asim; Kaplan, David R.; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of Medicine
    Purpose: Corneal sensory nerves protect the cornea from injury. They are also thought to stimulate limbal stem cells (LSCs) to produce transparent epithelial cells constantly, enabling vision. In other organs, Schwann cells (SCs) associated with tissue-innervating axon terminals mediate tissue regeneration. This study defines the critical role of the corneal axon-ensheathing SCs in homeostatic and regenerative corneal epithelial cell renewal. Methods: SC localization in the cornea was determined by in situ hybridization and immunohistochemistry with SC markers. In vivo SC visualization and/or ablation were performed in mice with inducible corneal SC-specific expression of tdTomato and/or Diphtheria toxin, respectively. The relative locations of SCs and LSCs were observed with immunohistochemical analysis of harvested genetically SC-prelabeled mouse corneas with LSC-specific antibodies. The correlation between cornea-innervating axons and the appearance of SCs was ascertained using corneal denervation in rats. To determine the limbal niche cellular composition and gene expression changes associated with innervation-dependent epithelial renewal, single-cell RNA sequencing (scRNA-seq) of dissociated healthy, de-epithelized, and denervated cornea limbi was performed. Results: We observed limbal enrichment of corneal axon-associated myelinating and non-myelinating SCs. Induced local genetic ablation of SCs, although leaving corneal sensory innervation intact, markedly inhibited corneal epithelial renewal. scRNA-seq analysis (1) highlighted the transcriptional heterogenicity of cells populating the limbal niche, and (2) identified transcriptional changes associated with corneal innervation and during wound healing that model potential regulatory paracrine interactions between SCs and LSCs. Conclusions: Limbal SCs are required for innervation-dependent corneal epithelial renewal.
  • Loading...
    Thumbnail Image
    Item
    Sustained Release of Tacrolimus From a Topical Drug Delivery System Promotes Corneal Reinnervation
    (Association for Research in Vision and Ophthalmology (ARVO), 2022) Daeschler, Simeon C.; Mirmoeini, Kaveh; Gordon, Tessa; Chan, Katelyn; Zhang, Jennifer; Ali, Asim; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of Medicine
    Purpose: Corneal nerve fibers provide sensation and maintain the epithelial renewal process. Insufficient corneal innervation can cause neurotrophic keratopathy. Here, topically delivered tacrolimus is evaluated for its therapeutic potential to promote corneal reinnervation in rats. Methods: A compartmentalized neuronal cell culture was used to determine the effect of locally delivered tacrolimus on sensory axon regeneration in vitro. The regenerating axons but not the cell bodies were exposed to tacrolimus (50 ng/mL), nerve growth factor (50 ng/mL), or a vehicle control. Axon area and length were measured after 48 hours. Then, a biodegradable nanofiber drug delivery system was fabricated via electrospinning of a tacrolimus-loaded polycarbonate-urethane polymer. Biocompatibility, degradation, drug biodistribution, and therapeutic effectiveness were tested in a rat model of neurotrophic keratopathy induced by stereotactic trigeminal nerve ablation. Results: Sensory neurons whose axons were exposed to tacrolimus regenerated significantly more and longer axons compared to vehicle-treated cultures. Trigeminal nerve ablation in rats reliably induced corneal denervation. Four weeks after denervation, rats that had received tacrolimus topically showed similar limbal innervation but a significantly higher nerve fiber density in the center of the cornea compared to the non-treated control. Topically applied tacrolimus was detectable in the ipsilateral vitreal body, the plasma, and the ipsilateral trigeminal ganglion but not in their contralateral counterparts and vital organs after 4 weeks of topical release. Conclusions: Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational relevance: Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.
  • Loading...
    Thumbnail Image
    Item
    The Role of Sensory Innervation in Homeostatic and Injury-Induced Corneal Epithelial Renewal
    (MDPI, 2023-08-09) Feinberg, Konstantin; Tajdaran, Kiana; Mirmoeini, Kaveh; Daeschler, Simeon C.; Henriquez, Mario A.; Stevens, Katelyn E.; Mulenga, Chilando M.; Hussain, Arif; Hamrah, Pedram; Ali, Asim; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of Medicine
    The cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.
  • Loading...
    Thumbnail Image
    Item
    VP6: Sustained Topical Release of Tacrolimus Promotes Corneal Reinnervation in Rats
    (Wolters Kluwer, 2022) Daeschler, Simeon C.; Feinberg, Konstantin; Mirmoeini, Kaveh; Chan, Katelyn; Zhang, Jennifer; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of Medicine
    INTRODUCTION: Corneal nerve fibers provide sensibility and maintain ocular surface health. Impaired corneal innervation results in progressive corneal breakdown and vision loss termed neurotrophic keratopathy. Non-surgical therapies that promote corneal reinnervation and thereby prevent vision loss are presently unavailable. MATERIALS AND METHODS: In a compartmentalized neuronal cell culture system only the axonal compartments were exposed to either Tacrolimus (50 ng/ml, n=15) or a vehicle (n=9). After 48h, the axonal surface area and axon length were measured. A biodegradable drug-delivery-system (DDS) was fabricated via electrospinning of a Tacrolimus loaded polycarbonte-urethane-polymer (100 µg Tacrolimus per DDS) which achieved sustained Tacrolimus release for >31 days. Effectiveness was tested in a rat model of neurotrophic keratopathy. Adult rats (n=16) underwent trigeminal nerve ablation and received either a Tacrolimus DDS topically before tarsorrhaphy or tarsorrhaphy only. After 28 days, the normalized corneal nerve fiber density was determined and Tacrolimus biodistribution was assessed via mass spectrometry. RESULTS: Sensory neurons whose axons were exposed to Tacrolimus regenerated significantly more axons (surface area: 2.46±0.7mm2 vs. 0.45±0.2mm2; p<0.001) that were significantly longer on average (2.49±0.5mm vs. 0.84±0.39 mm; p < 0.001) compared to vehicle treated cultures. In agreement with the in vitro results, rats that had received Tacrolimus topically showed significantly higher corneal nerve fiber density (1.48±0.68) compared to the non-treated control (0.19±0.18; p < 0.001) and 7-days post denervation (0.07±0.04; p < 0.001). Tacrolimus was detectable in the ipsilateral vitreal body (3.2±1.9 ng/g), the plasma (1.3±0.7 ng/ml) and the ipsilateral trigeminal ganglion (0.6±0.1 ng/g) but not in their contralateral counterparts or vital organs (liver, kidey, heart) 28-days post denervation. CONCLUSION: Local delivery of low-dose Tacrolimus accelerates sensory axon regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Therefore, topically applied Tacrolimus may provide a readily translatable approach to promote corneal reinnervation in patients suffering from corneal nerve fiber loss.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University