- Browse by Subject
Browsing by Subject "Neuronal excitability"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies(Society for Neuroscience, 1998-08-15) Lopshire, John C.; Nicol, Grant D.; Pharmacology and Toxicology, School of MedicineTreatment with proinflammatory prostaglandin E2 (PGE2) produced a transient sensitization of whole-cell currents elicited by the vanilloid capsaicin. The intracellular signaling pathways that mediate the initiation of this PGE2-induced sensitization of the capsaicin-elicited current in rat sensory neurons are not well established. Treatment with either forskolin (100 nM to 10 microM) or membrane-permeant analogs of cAMP, 8-bromo-cAMP (8-Br-cAMP) and chlorphenylthio-cAMP (10 microM to 1 mM), transiently sensitized neuronal responses elicited by capsaicin in a manner analogous to that produced by PGE2. The duration of sensitization was lengthened with increasing concentrations of forskolin; however, higher concentrations of 8-Br-cAMP or chlorphenylthio-cAMP led to a shortening of sensitization. The inactive analog of forskolin, dideoxy-forskolin, had no effect on capsaicin responses. Inclusion of the inhibitor of protein kinase A in the recording pipette completely suppressed the sensitization produced by PGE2 or forskolin. In recordings from membrane patches in the cell-attached configuration, the bath application of capsaicin evoked single-channel currents in which the level of channel activity was concentration-dependent and had an EC50 of 1.4 microM. These single-channel currents evoked by capsaicin exhibited an apparent reversal potential of +4 mV and were blocked by the capsaicin antagonist capsazepine. Exposure of the sensory neuron to either PGE2 or forskolin produced a large and transient increase in the mean channel activity (NPo) elicited by capsaicin, although the unitary conductance remained unaltered. Taken together, these observations suggest that modulation of the capsaicin-gated channel by the cAMP-protein kinase A signaling pathway enhanced the gating of these channels and consequently resulted in the sensitization of the whole-cell currents.Item S-Palmitoylation of the sodium channel Nav1.6 regulates its activity and neuronal excitability(Elsevier, 2020-05) Pan, Yanling; Xiao, Yucheng; Pei, Zifan; Cummins, Theodore R.; Biology, School of ScienceS-Palmitoylation is a reversible post-translational lipid modification that dynamically regulates protein functions. Voltage-gated sodium channels are subjected to S-palmitoylation and exhibit altered functions in different S-palmitoylation states. Our aim was to investigate whether and how S-palmitoylation regulates Nav1.6 channel function and to identify S-palmitoylation sites that can potentially be pharmacologically targeted. Acyl-biotin exchange assay showed that Nav1.6 is modified by S-palmitoylation in the mouse brain and in a Nav1.6 stable HEK 293 cell line. Using whole-cell voltage clamp, we discovered that enhancing S-palmitoylation with palmitic acid increases Nav1.6 current, whereas blocking S-palmitoylation with 2-bromopalmitate reduces Nav1.6 current and shifts the steady-state inactivation in the hyperpolarizing direction. Three S-palmitoylation sites (Cys1169, Cys1170, and Cys1978) were identified. These sites differentially modulate distinct Nav1.6 properties. Interestingly, Cys1978 is exclusive to Nav1.6 among all Nav isoforms and is evolutionally conserved in Nav1.6 among most species. Cys1978S-palmitoylation regulates current amplitude uniquely in Nav1.6. Furthermore, we showed that eliminating S-palmitoylation at specific sites alters Nav1.6-mediated excitability in dorsal root ganglion neurons. Therefore, our study reveals S-palmitoylation as a potential isoform-specific mechanism to modulate Nav activity and neuronal excitability in physiological and diseased conditions.