ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Neurofibromatosis type 1 (NF1)"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Development of the Adult PedsQL™ Neurofibromatosis Type 1 Module: Initial Feasibility, Reliability and Validity
    (Springer Nature, 2013-02-21) Nutakki, Kavitha; Hingtgen, Cynthia M.; Monahan, Patrick; Varni, James W.; Swigonski, Nancy L.; Pediatrics, School of Medicine
    Background: Neurofibromatosis type 1 (NF1) is a common autosomal dominant genetic disorder with significant impact on health-related quality of life (HRQOL). Research in understanding the pathogenetic mechanisms of neurofibroma development has led to the use of new clinical trials for the treatment of NF1. One of the most important outcomes of a trial is improvement in quality of life, however, no condition specific HRQOL instrument for NF1 exists. The objective of this study was to develop an NF1 HRQOL instrument as a module of PedsQL™ and to test for its initial feasibility, internal consistency reliability and validity in adults with NF1. Methods: The NF1 specific HRQOL instrument was developed using a standard method of PedsQL™ module development - literature review, focus group/semi-structured interviews, cognitive interviews and experts' review of initial draft, pilot testing and field testing. Field testing involved 134 adults with NF1. Feasibility was measured by the percentage of missing responses, internal consistency reliability was measured with Cronbach's alpha and validity was measured by the known-groups method. Results: Feasibility, measured by the percentage of missing responses was 4.8% for all subscales on the adult version of the NF1-specific instrument. Internal consistency reliability for the Total Score (alpha =0.97) and subscale reliabilities ranging from 0.72 to 0.96 were acceptable for group comparisons. The PedsQL™ NF1 module distinguished between NF1 adults with excellent to very good, good, and fair to poor health status. Conclusions: The results demonstrate the initial feasibility, reliability and validity of the PedsQL™ NF1 module in adult patients. The PedsQL™ NF1 Module can be used to understand the multidimensional nature of NF1 on the HRQOL patients with this disorder.
  • Loading...
    Thumbnail Image
    Item
    The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation
    (MDPI, 2024-02-29) White, Emily E.; Rhodes, Steven D.; Medical and Molecular Genetics, School of Medicine
    Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University