- Browse by Subject
Browsing by Subject "Neuroendocrine"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparative Analysis of 3D Culture Methodologies in Prostate Cancer Cells(bioRxiv, 2025-03-13) Foster, Ella; Wardhana, Oliver; Zeng, Ziyu; Lu, Xin; Medicine, School of MedicineThree-dimensional (3D) cell culture models are increasingly utilized in cancer research to better replicate in vivo tumor microenvironments. This study examines the effects of different 3D scaffolding materials, including Matrigel, GelTrex, and the plant-based GrowDex, on prostate cancer cell lines, with a particular emphasis on neuroendocrine prostate cancer (NEPC). Four cell lines (LNCaP, LASCPC-01, PC-3, and KUCaP13) were cultured in these scaffolds to evaluate spheroid formation, cell viability, and gene expression. The results revealed that while all scaffolds supported cell viability, spheroid formation varied significantly: Matrigel promoted the most robust spheroids, especially for LASCPC-01, whereas GrowDex exhibited limitations for certain cell lines. Gene expression analysis indicated a consistent reduction in androgen receptor (AR) expression in LNCaP cells across all scaffolds, suggesting a potential shift towards a neuroendocrine phenotype. However, the expression of neuroendocrine markers varied depending on the scaffold and culture method, with the mini-domes method in Matrigel leading to decreased expression of both castration-resistant prostate cancer (CRPC) and NEPC markers. These findings highlight the scaffold-dependent variability in 3D culture outcomes and emphasize the need for standardized methodologies to ensure consistency and relevance in prostate cancer research.Item LSD1 inhibition attenuates targeted therapy-induced lineage plasticity in BRAF mutant colorectal cancer(Springer Nature, 2025-04-23) Ladaika, Christopher A.; Chakraborty, Averi; Masood, Ashiq; Hostetter, Galen; Yi, Joo Mi; O’Hagan, Heather M.; Medicine, School of MedicineBackground: BRAF activating mutations occur in approximately 10% of metastatic colorectal cancer (CRCs) and are associated with worse prognosis in part due to an inferior response to standard chemotherapy. Standard of care for patients with refractory metastatic BRAFV600E CRC is treatment with BRAF and EGFR inhibitors and recent FDA approval was given to use these inhibitors in combination with chemotherapy for patients with treatment naïve metastatic BRAFV600E CRC. Lineage plasticity to neuroendocrine cancer is an emerging mechanism of targeted therapy resistance in several cancer types. Enteroendocrine cells (EECs), the neuroendocrine cell of the intestine, are uniquely present in BRAF mutant CRC as compared to BRAF wildtype CRC. Methods: BRAF plus EGFR inhibitor treatment induced changes in cell composition were determined by gene expression, imaging and single cell approaches in multiple models of BRAF mutant CRC. Furthermore, multiple clinically relevant inhibitors of the lysine demethylase LSD1 were tested to determine which inhibitor blocked the changes in cell composition. Results: Combined BRAF and EGFR inhibition enriched for EECs in all BRAF mutant CRC models tested. Additionally, EECs and other secretory cell types were enriched in a subset of BRAFV600E CRC patient samples following targeted therapy. Importantly, inhibition of LSD1 with a clinically relevant inhibitor attenuated targeted therapy-induced EEC enrichment through blocking the interaction of LSD1, CoREST2 and STAT3. Conclusions: Our findings that BRAF plus EGFR inhibition induces lineage plasticity in BRAFV600E CRC represents a new paradigm for how resistance to BRAF plus EGFR inhibition occurs. Additionally, our finding that LSD1 inhibition blocks lineage plasticity has the potential to improve responses to BRAF plus EGFR inhibitor therapy in patients.