- Browse by Subject
Browsing by Subject "Network lifetime"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Energy-efficient and balanced routing in low-power wireless sensor networks for data collection(Elsevier, 2022-03) Navarro, Miguel; Liang, Yao; Zhong, Xiaoyang; Computer and Information Science, School of ScienceCost-based routing protocols are the main approach used in practical wireless sensor network (WSN) and Internet of Things (IoT) deployments for data collection applications with energy constraints; however, those routing protocols lead to the concentration of most of the data traffic on some specific nodes which provide the best available routes, thus significantly increasing their energy consumption. Consequently, nodes providing the best routes are potentially the first ones to deplete their batteries and stop working. In this paper, we introduce a novel routing strategy for energy efficient and balanced data collection in WSNs/IoT, which can be applied to any cost-based routing solution to exploit suboptimal network routing alternatives based on the parent set concept. While still taking advantage of the stable routing topologies built in cost-based routing protocols, our approach adds a random component into the process of packet forwarding to achieve a better network lifetime in WSNs. We evaluate the implementation of our approach against other state-of-the-art WSN routing protocols through thorough real-world testbed experiments and simulations, and demonstrate that our approach achieves a significant reduction in the energy consumption of the routing layer in the busiest nodes ranging from 11% to 59%, while maintaining over 99% reliability. Furthermore, we conduct the field deployment of our approach in a heterogeneous WSN for environmental monitoring in a forest area, report the experimental results and illustrate the effectiveness of our approach in detail. Our EER based routing protocol CTP+EER is made available as open source to the community for evaluation and adoption.