- Browse by Subject
Browsing by Subject "Network architecture"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Architecture for Mobile Heterogeneous Multi Domain Networks(Hindawi, 2010-04-01) Durresi, Arjan; Zhang, Ping; Durresi, Mimoza; Barolli, Leonard; Computer and Information Science, School of ScienceMulti domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy.Item A framework for economic analysis of network architectures(2018-12) Karakus, Murat; Durresi, Arjan; Liang, Yao; Tuceryan, Mihran; Xia, YuniThis thesis firstly surveys and summarizes the state-of-the-art studies from two research areas in Software De fined Networking (SDN) architecture: (i) control plane scalability and (ii) Quality of Service (QoS)-related problems. It also outlines the potential challenges and open problems that need to be addressed further for more scalable SDN control planes and better and complete QoS abilities in SDN networks. The thesis secondly presents a hierarchical SDN design along with an inter-AS QoS-guaranteed routing approach. This design addresses the scalability problems of control plane and privacy concerns of inter-AS QoS routing philosophies in SDN. After exploring the roots of control plane scalability problems in SDN, the thesis then proposes a metric to quantitatively evaluate the control plane scalability in SDN. Later, the thesis presents a general framework for economic analysis of network architectures and designs. To this end, the thesis defines and utilizes two metrics, Unit Service Cost Scalability and Cost-to-Service, to evaluate how SDN architecture performs compared to MPLS architecture in terms of unit cost for a service and cost of introducing a new service along with giving mathematical models to calculate Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) of a network. Moreover, the thesis studies the problem of optimal final pricing for services by proposing an optimal pricing scheme for a service request with QoS in SDN environment while aiming to maximize benefits of both service providers and customers. Finally, the thesis investigates how programmable network architectures, i.e. SDN, affect the network economics compared to traditional network architectures, i.e. MPLS, in case of failures along with exploring the economic impact of failures in different SDN control plane models.