ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Network‐based neurodegeneration"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sex-specific topological structure associated with dementia via latent space estimation
    (Wiley, 2024) Wang, Selena; Wang, Yiting; Xu, Frederick H.; Tian, Xinyuan; Fredericks, Carolyn A.; Shen, Li; Zhao, Yize; Alzheimer’s Disease Neuroimaging Initiative; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
    Introduction: We investigate sex-specific topological structures associated with typical Alzheimer's disease (AD) dementia using a novel state-of-the-art latent space estimation technique. Methods: This study applies a probabilistic approach for latent space estimation that extends current multiplex network modeling approaches and captures the higher-order dependence in functional connectomes by preserving transitivity and modularity structures. Results: We find sex differences in network topology with females showing more default mode network (DMN)-centered hyperactivity and males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that centrality plays an important role in dementia-related dysfunction with stronger association between connectivity changes and regional centrality in females than in males. Discussion: The study contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes. Highlights: We find evidence supporting the active role network topology plays in neurodegeneration with an imbalance between the excitatory and inhibitory mechanisms that can lead to whole-brain destabilization in dementia patients. We find sex-based differences in network topology with females showing more default mode network (DMN)-centered hyperactivity, males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that brain region centrality plays an important role in dementia-related dysfunction with a stronger association between connectivity changes and regional centrality in females than in males. Females, compared to males, tend to exhibit stronger dementia-related changes in regions that are the central actors of the brain networks. Taken together, this research uniquely contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University