- Browse by Subject
Browsing by Subject "Nerve injury"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair(Wolters Kluwer, 2024) Daeschler, Simeon C.; So, Katelyn J. W.; Feinberg, Konstantin; Manoraj, Marina; Cheung, Jenny; Zhang, Jennifer; Mirmoeini, Kaveh; Santerre, J. Paul; Gordon, Tessa; Borschel, Gregory H.; Surgery, School of MedicineAxonal regeneration following surgical nerve repair is slow and often incomplete, resulting in poor functional recovery which sometimes contributes to lifelong disability. Currently, there are no FDA-approved therapies available to promote nerve regeneration. Tacrolimus accelerates axonal regeneration, but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery. The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site, with suitable properties for scalable production and clinical application, aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure. Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days. Size and drug loading are adjustable for applications in small and large caliber nerves, and the wrap degrades within 120 days into biocompatible byproducts. Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80% compared with systemic delivery. Given its surgical suitability and preclinical efficacy and safety, this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.Item Advancing Nerve Regeneration: Translational Perspectives of Tacrolimus (FK506)(MDPI, 2023-08-14) Daeschler, Simeon C.; Feinberg, Konstantin; Harhaus, Leila; Kneser, Ulrich; Gordon, Tessa; Borschel, Gregory H.; Ophthalmology, School of MedicinePeripheral nerve injuries have far-reaching implications for individuals and society, leading to functional impairments, prolonged rehabilitation, and substantial socioeconomic burdens. Tacrolimus, a potent immunosuppressive drug known for its neuroregenerative properties, has emerged in experimental studies as a promising candidate to accelerate nerve fiber regeneration. This review investigates the therapeutic potential of tacrolimus by exploring the postulated mechanisms of action in relation to biological barriers to nerve injury recovery. By mapping both the preclinical and clinical evidence, the benefits and drawbacks of systemic tacrolimus administration and novel delivery systems for localized tacrolimus delivery after nerve injury are elucidated. Through synthesizing the current evidence, identifying practical barriers for clinical translation, and discussing potential strategies to overcome the translational gap, this review provides insights into the translational perspectives of tacrolimus as an adjunct therapy for nerve regeneration.Item CD4+ T cell expression of the IL-10 receptor is necessary for facial motoneuron survival after axotomy(BMC, 2020) Runge, Elizabeth M.; Iyer, Abhirami K.; Setter, Deborah O.; Kennedy, Felicia M.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy and Cell Biology, School of MedicineBackground: After peripheral nerve transection, facial motoneuron (FMN) survival depends on an intact CD4+ T cell population and a central source of interleukin-10 (IL-10). However, it has not been determined previously whether CD4+ T cells participate in the central neuroprotective IL-10 cascade after facial nerve axotomy (FNA). Methods: Immunohistochemical labeling of CD4+ T cells, pontine vasculature, and central microglia was used to determine whether CD4+ T cells cross the blood-brain barrier and enter the facial motor nucleus (FMNuc) after FNA. The importance of IL-10 signaling in CD4+ T cells was assessed by performing adoptive transfer of IL-10 receptor beta (IL-10RB)-deficient CD4+ T cells into immunodeficient mice prior to injury. Histology and qPCR were utilized to determine the impact of IL-10RB-deficient T cells on FMN survival and central gene expression after FNA. Flow cytometry was used to determine whether IL-10 signaling in T cells was necessary for their differentiation into neuroprotective subsets. Results: CD4+ T cells were capable of crossing the blood-brain barrier and associating with reactive microglial nodules in the axotomized FMNuc. Full induction of central IL-10R gene expression after FNA was dependent on CD4+ T cells, regardless of their own IL-10R signaling capability. Surprisingly, CD4+ T cells lacking IL-10RB were incapable of mediating neuroprotection after axotomy and promoted increased central expression of genes associated with microglial activation, antigen presentation, T cell co-stimulation, and complement deposition. There was reduced differentiation of IL-10RB-deficient CD4+ T cells into regulatory CD4+ T cells in vitro. Conclusions: These findings support the interdependence of IL-10- and CD4+ T cell-mediated mechanisms of neuroprotection after axotomy. CD4+ T cells may potentiate central responsiveness to IL-10, while IL-10 signaling within CD4+ T cells is necessary for their ability to rescue axotomized motoneuron survival. We propose that loss of IL-10 signaling in CD4+ T cells promotes non-neuroprotective autoimmunity after FNA.Item Cellular Sources and Neuroprotective Roles of Interleukin-10 in the Facial Motor Nucleus after Axotomy(MDPI, 2022-10-09) Runge, Elizabeth M.; Setter, Deborah O.; Iyer, Abhirami K.; Regele, Eric J.; Kennedy, Felicia M.; Sanders, Virginia M.; Jones, Kathryn J.; Anatomy, Cell Biology and Physiology, School of MedicineFacial motoneuron (FMN) survival is mediated by CD4+ T cells in an interleukin-10 (IL-10)-dependent manner after facial nerve axotomy (FNA), but CD4+ T cells themselves are not the source of this neuroprotective IL-10. The aims of this study were to (1) identify the temporal and cell-specific induction of IL-10 expression in the facial motor nucleus and (2) elucidate the neuroprotective capacity of this expression after axotomy. Immunohistochemistry revealed that FMN constitutively produced IL-10, whereas astrocytes were induced to make IL-10 after FNA. Il10 mRNA co-localized with microglia before and after axotomy, but microglial production of IL-10 protein was not detected. To determine whether any single source of IL-10 was critical for FMN survival, Cre/Lox mouse strains were utilized to selectively knock out IL-10 in neurons, astrocytes, and microglia. In agreement with the localization data reflecting concerted IL-10 production by multiple cell types, no single cellular source of IL-10 alone could provide neuroprotection after FNA. These findings suggest that coordinated neuronal and astrocytic IL-10 production is necessary for FMN survival and has roles in neuronal homeostasis, as well as neuroprotective trophism after axotomy.Item Differential expression of CaMKII isoforms and overall kinase activity in rat dorsal root ganglia after injury.(Elsevier, 2015-08-06) Bangaru, Madhavi Latha Yadav; Meng, Jingwei; Kaiser, Derek J.; Yu, Hongwei; Fischer, Greg; Hogan, Quinn H.; Hudmon, Andy; Department of Biochemistry & Molecular Biology, IU School of MedicineCa(2+)/calmodulin-dependent protein kinase II (CaMKII) decodes neuronal activity by translating cytoplasmic Ca(2+) signals into kinase activity that regulates neuronal functions including excitability, gene expression, and synaptic transmission. Four genes lead to developmental and differential expression of CaMKII isoforms (α, β, γ, δ). We determined mRNA levels of these isoforms in the dorsal root ganglia (DRG) of adult rats with and without nerve injury in order to determine if differential expression of CaMKII isoforms may contribute to functional differences that follow injury. DRG neurons express mRNA for all four isoforms, and the relative abundance of CaMKII isoforms was γ>α>β=δ, based on the CT values. Following ligation of the 5th lumbar (L5) spinal nerve (SNL), the β isoform did not change, but mRNA levels of both the γ and α isoforms were reduced in the directly injured L5 neurons, and the α isoform was reduced in L4 neurons, compared to their contemporary controls. In contrast, expression of the δ isoform mRNA increased in L5 neurons. CaMKII protein decreased following nerve injury in both L4 and L5 populations. Total CaMKII activity measured under saturating Ca(2+)/CaM conditions was decreased in both L4 and L5 populations, while autonomous CaMKII activity determined in the absence of Ca(2+) was selectively reduced in axotomized L5 neurons 21days after injury. Thus, loss of CaMKII signaling in sensory neurons after peripheral nerve injury may contribute to neuronal dysfunction and pain.Item Emergency Department Utilization After Administration of Peripheral Nerve Blocks for Upper Extremity Surgery(Sage, 2022) Loewenstein, Scott N.; Bamba, Ravinder; Adkinson, Joshua M.; Surgery, School of MedicineBackground: The purpose of this study was to determine the impact of upper extremity peripheral nerve blocks on emergency department (ED) utilization after hand and upper extremity surgery. Methods: We reviewed all outpatient upper extremity surgeries performed in a single Midwestern state between January 2009 and June 2019 using the Indiana Network for Patient Care. These encounters were used to develop a database of patient demographics, comorbidities, concurrent procedures, and postoperative ED visit utilization data. We performed univariate, bivariate, and multivariate logistic regression analyses. Results: Among 108 451 outpatient surgical patients, 9079 (8.4%) received blocks. Within 1 week of surgery, a greater proportion of patients who received peripheral nerve blocks (1.4%) presented to the ED than patients who did not (0.9%) (P < .001). The greatest risk was in the first 2 postoperative days (relative risk, 1.78; P < .001). Pain was the principal reason for ED utilization in the block cohort (53.6%) compared with those who did not undergo a block (35.1%) (P < .001). When controlling for comorbidities and demographics, only peripheral nerve blocks (adjusted odds ratio [OR], 1.71; P = 0.007) and preprocedural opioid use (adjusted OR, 1.43; P = .020) conferred an independently increased risk of ED utilization within the first 2 postoperative days. Conclusions: Peripheral nerve blocks used for upper extremity surgery are associated with a higher risk of unplanned ED utilization, most likely related to rebound pain. Through proper patient education and pain management, we can minimize this unnecessary resource utilization.Item Impact of peripheral immune status on central molecular responses to facial nerve axotomy(Elsevier, 2018-02) Setter, Deborah O.; Runge, Elizabeth M.; Schartz, Nicole D.; Kennedy, Felicia M.; Brown, Brandon L.; McMillan, Kathryn P.; Miller, Whitney M.; Shah, Kishan M.; Haulcomb, Melissa M.; Sanders, Virginia M.; Jones, Karthryn J.; Anatomy and Cell Biology, IU School of MedicineWhen facial nerve axotomy (FNA) is performed on immunodeficient recombinase activating gene-2 knockout (RAG-2-/-) mice, there is greater facial motoneuron (FMN) death relative to wild type (WT) mice. Reconstituting RAG-2-/- mice with whole splenocytes rescues FMN survival after FNA, and CD4+ T cells specifically drive immune-mediated neuroprotection. Evidence suggests that immunodysregulation may contribute to motoneuron death in amyotrophic lateral sclerosis (ALS). Immunoreconstitution of RAG-2-/- mice with lymphocytes from the mutant superoxide dismutase (mSOD1) mouse model of ALS revealed that the mSOD1 whole splenocyte environment suppresses mSOD1 CD4+ T cell-mediated neuroprotection after FNA. The objective of the current study was to characterize the effect of CD4+ T cells on the central molecular response to FNA and then identify if mSOD1 whole splenocytes blocked these regulatory pathways. Gene expression profiles of the axotomized facial motor nucleus were assessed from RAG-2-/- mice immunoreconstituted with either CD4+ T cells or whole splenocytes from WT or mSOD1 donors. The findings indicate that immunodeficient mice have suppressed glial activation after axotomy, and cell transfer of WT CD4+ T cells rescues microenvironment responses. Additionally, mSOD1 whole splenocyte recipients exhibit an increased astrocyte activation response to FNA. In RAG-2-/- + mSOD1 whole splenocyte mice, an elevation of motoneuron-specific Fas cell death pathways is also observed. Altogether, these findings suggest that mSOD1 whole splenocytes do not suppress mSOD1 CD4+ T cell regulation of the microenvironment, and instead, mSOD1 whole splenocytes may promote motoneuron death by either promoting a neurotoxic astrocyte phenotype or inducing Fas-mediated cell death pathways. This study demonstrates that peripheral immune status significantly affects central responses to nerve injury. Future studies will elucidate the mechanisms by which mSOD1 whole splenocytes promote cell death and if inhibiting this mechanism can preserve motoneuron survival in injury and disease.Item Interaction between Schwann cells and other cells during repair of peripheral nerve injury(Wolters Kluwer, 2021-01) Qu, Wen-Rui; Zhu, Zhe; Liu, Jun; Song, De-Biao; Tian, Heng; Chen, Bing-Peng; Li, Rui; Deng, Ling-Xiao; Neurological Surgery, School of MedicinePeripheral nerve injury (PNI) is common and, unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury. Peripheral myelinating glia, Schwann cells (SCs), interact with various cells in and around the injury site and are important for debris elimination, repair, and nerve regeneration. Following PNI, Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages. Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair. The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve. In particular, SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers. This mobility increases SC interactions with other cells in the nerve and the exogenous environment, which influence SC behavior post-injury. Following PNI, SCs directly and indirectly interact with other SCs, fibroblasts, and macrophages. In addition, the inter- and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve. This review provides a basic assessment of SC function post-PNI, as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and, ultimately, repair of the injured nerve.Item Risk Factors for a False-Negative Examination in Complete Upper Extremity Nerve Lacerations(Sage, 2021) Loewenstein, Scott N.; Wulbrecht, Reed; Leonhard, Vanessa; Sasor, Sarah; Cook, Julia; Timsina, Lava; Adkinson, Joshua; Surgery, School of MedicineBackground: Many patients with complete nerve lacerations after upper extremity trauma have a documented normal peripheral nerve examination at the time of initial evaluation. The purpose of this study was to determine whether physician-, patient-, and injury-related factors increase the risk of false-negative nerve examinations. Methods: A statewide health information exchange was used to identify complete upper extremity nerve lacerations subsequently confirmed by surgical exploration at 1 pediatric and 2 adult level I trauma centers in a single city from January 2013 to January 2017. Charts were manually reviewed to build a database that included Glasgow Coma Scale score, urine drug screen results, blood alcohol level, presence of concomitant trauma, type of injury, level of injury, laterality, initial provider examination, and initial specialist examination. Bivariate and multivariable analyses were performed to evaluate risk factors for a false-negative examination. Results: Two hundred eighty-eight patients met inclusion criteria. The overall false-negative examination rate was 32.5% at initial encounter, which was higher among emergency medicine physicians compared with extremity subspecialists (P < .001) and among trauma surgeons compared with surgical subspecialists (P = .002). The false-negative rate decreased to 8% at subsequent encounter (P < .001). Risk factors for a false-negative nerve examination included physician specialty, a gunshot wound mechanism of injury, injury at the elbow, and age greater than 71 years. Conclusion: There is a high false-negative rate among upper extremity neurotmesis injuries. Patients with an injury pattern that may lead to nerve injury warrant prompt referral to an upper extremity specialist in an effort to optimize outcomes.Item The Role of Interleukin-10 in CD4+ T Cell-Mediated Neuroprotection after Facial Nerve Injury(2019-05) Runge, Elizabeth Marie; Jones, Kathryn J.; Block, Michelle L.; Sanders, Virginia M.; Sengelaub, Dale R.; Xu, Xiao-MingThe adaptive arm of the immune system is necessary for facial motoneuron (FMN) survival after facial nerve axotomy (FNA). CD4+ T cells mediate FMN survival after FNA in an interleukin-10 (IL-10) dependent manner, but are not themselves the cellular source of neuroprotective IL-10. The aims of this study are to elucidate the neuroprotective capacity of cell-specific IL-10 expression, and to investigate the manner in which CD4+ T cells participate in IL-10 signaling after FNA. Immunohistochemistry revealed that FMN themselves were constitutive producers of IL-10, and astrocytes were induced to make IL-10 after FNA. Il10 mRNA co-localized with microglia before and after axotomy, but microglial production of IL-10 protein was not detected. To determine whether any single source of IL-10 is critical for FMN survival, Cre/Lox mouse strains were utilized to selectively knock out IL-10 in neurons, astrocytes, and microglia. In agreement with the localization data reflecting concerted IL-10 production by multiple cell types, no single cellular source of IL-10 was necessary for FMN survival. Gene expression analysis of wild-type, immunodeficient, and immune cell-reconstituted animals was performed to determine the role of the immune system in modulating the central IL-10 signaling cascade. This revealed that CD4+ T cells were necessary for full upregulation of central IL-10 receptor (IL-10R) expression after FNA, regardless of their own IL-10R beta (IL-10RB) expression or IL-10R signaling capability. Surprisingly, the ability of CD4+ T cells to respond to IL-10 was critical for their ability to mediate neuroprotection. Adoptive transfer of IL-10RB-deficient T cells resulted in increased central expression of genes associated with microglial activation, antigen presentation, T cell co-stimulation, and complement deposition in response to injury. These data suggest that IL-10RB functions on the T cell to prevent non-neuroprotective immune activation after axotomy. The conclusions drawn from this study support a revised hypothesis for the mechanisms of IL-10-mediated neuroprotection, in which IL-10 serves both trophic and immune-modulating roles after axotomy. This research has implications for the development of immune-modifying therapies for peripheral nerve injury and motoneuron diseases.