- Browse by Subject
Browsing by Subject "Nerve Net"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Abnormal Amygdala Functional Connectivity Associated With Emotional Lability in Children With Attention-Deficit/Hyperactivity Disorder(Elsevier, 2014-03) Hulvershorn, Leslie A.; Mennes, Maarten; Castellanos, F. Xavier; Di Martino, Adriana; Milham, Michael P.; Hummer, Tom A.; Roy, Amy Krain; Department of Psychiatry, IU School of MedicineObjective A substantial proportion of children with attention-deficit/hyperactivity disorder (ADHD) also display emotion regulation deficits manifesting as chronic irritability, severe temper outbursts, and aggression. The amygdala is implicated in emotion regulation, but its connectivity and relation to emotion regulation in ADHD has yet to be explored. The purpose of this study was to examine the relationship between intrinsic functional connectivity (iFC) of amygdala circuits and emotion regulation deficits in youth with ADHD. Method Bilateral amygdala iFC was examined using functional magnetic resonance imaging in 63 children with ADHD, aged 6 to 13 years. First, we examined the relationship between amygdala IFC and parent ratings of emotional lability (EL) in children with ADHD. Second, we compared amygdala iFC across subgroups of children with ADHD and high EL (n = 18), ADHD and low EL (n = 20), and typically developing children (TDC), all with low EL (n = 19). Results Higher EL ratings were associated with greater positive iFC between the amygdala and rostral anterior cingulate cortex in youth with ADHD. EL scores were also negatively associated with iFC between bilateral amygdala and posterior insula/superior temporal gyrus. Patterns of amygdala-cortical iFC in ADHD participants with low EL were not different from the comparison group, and the effect sizes for these comparisons were smaller than those for the trend-level differences observed between the high-EL and TDC groups. Conclusions In children with ADHD and a range of EL, deficits in emotion regulation were associated with altered amygdala–cortical iFC. When comparing groups that differed on ADHD status but not EL, differences in amygdala iFC were small and nonsignificant, highlighting the specificity of this finding to emotional deficits, independent of other ADHD symptoms.Item Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG(Elsevier, 2014-11-01) Korzeniewska, A.; Cervenka, M. C.; Jouny, C. C.; Perilla, J. R.; Harezlak, J.; Bergey, G. K.; Franaszczuk, P. J.; Crone, N. E.; Department of Biostatistics, Richard M. Fairbanks School of Public HealthSeizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which high frequency activity is propagated would help elucidate epileptogenic networks and thereby identify network nodes relevant for surgical planning. Intracranial EEG recordings were analyzed with a multivariate autoregressive modeling technique (short-time direct directed transfer function--SdDTF), based on the concept of Granger causality, to estimate the directionality and intensity of propagation of high frequency activity (70-175 Hz) during ictal and interictal recordings. These analyses revealed prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists as part of the ictal onset zone. In contrast, relatively little propagation of this activity was observed among the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients with focal ictal onset, but not in patients with a widely distributed ictal onset. In patients with focal ictal onsets, the patterns of propagation recorded during pre-ictal (up to 5 min immediately preceding ictal onset) and interictal (more than 24h before and after seizures) intervals were very similar to those recorded during seizures. The ability to characterize epileptogenic networks from interictal recordings could have important clinical implications for epilepsy surgery planning by reducing the need for prolonged invasive monitoring to record spontaneous seizures.