- Browse by Subject
Browsing by Subject "Nav1.7"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Differential expression of slow and fast-repriming tetrodotoxin-sensitive sodium currents in dorsal root ganglion neurons(Frontiers Media, 2024-01-11) Tan, Zhi-Yong; Wu, Bin; Su, Xiaolin; Zhou, You; Ji, Yong-Hua; Biochemistry and Molecular Biology, School of MedicineSodium channel Nav1.7 triggers the generation of nociceptive action potentials and is important in sending pain signals under physiological and pathological conditions. However, studying endogenous Nav1.7 currents has been confounded by co-expression of multiple sodium channel isoforms in dorsal root ganglion (DRG) neurons. In the current study, slow-repriming (SR) and fast-repriming (FR) tetrodotoxin-sensitive (TTX-S) currents were dissected electrophysiologically in small DRG neurons of both rats and mice. Three subgroups of small DRG neurons were identified based on the expression pattern of SR and FR TTX-S currents. A majority of rat neurons only expressed SR TTX-S currents, while a majority of mouse neurons expressed additional FR TTX-S currents. ProTx-II inhibited SR TTX-S currents with variable efficacy among DRG neurons. The expression of both types of TTX-S currents was higher in Isolectin B4-negative (IB4−) compared to Isolectin B4-positive (IB4+) neurons. Paclitaxel selectively increased SR TTX-S currents in IB4− neurons. In simulation experiments, the Nav1.7-expressing small DRG neuron displayed lower rheobase and higher frequency of action potentials upon threshold current injections compared to Nav1.6. The results suggested a successful dissection of endogenous Nav1.7 currents through electrophysiological manipulation that may provide a useful way to study the functional expression and pharmacology of endogenous Nav1.7 channels in DRG neurons.Item GATING OF THE SENSORY NEURONAL VOLTAGE-GATED SODIUM CHANNEL NAv1.7: ANALYSIS OF THE ROLE OF D3 AND D4 / S4-S5 LINKERS IN TRANSITION TO AN INACTIVATED STATE(2010-04-01T15:56:49Z) Jarecki, Brian W.; Cummins, Theodore R.; Nicol, Grant D.; Oxford, G. S.; Hudmon, Andrew; Schild, John H.Voltage-gated sodium channels (VGSCs) are dynamic membrane-spanning proteins crucial for determining the electrical excitability in nerve and muscle. VGSCs transition, or gate, between opened, closed, and inactivated states, in response to changes in transmembrane potential. Altered VGSC gating can affect electrical communication and is implicated in numerous channelopathies. Nav1.7, a VGSC isoform highly expressed in the peripheral nervous system, plays a unique role in pain perception as evidenced by single point missense mutations causing a spectrum of pain syndromes (inherited erythromelalgia; IEM and paroxysmal extreme pain disorder; PEPD) and nonsense mutations resulting in human insensitivity to pain (CIP). These studies indicate Nav1.7 is critical in pain transduction and, as such, structural perturbations to Nav1.7 affecting conformational stability and response to changes in transmembrane potential have the potential to cause pain. Therefore, the aims of this dissertation were to (1) examine the effects of PEPD mutations on the voltage-dependent properties Nav1.7; (2) investigate the effects Nav1.7 alternative splicing has on the impact of IEM and PEPD mutations; (3) evaluate the effects channelopathies, resulting from slowed inactivation, have on modulating an unusual type of sodium current that flows during membrane repolarization; and (4) determine the structural components involved in stabilizing Nav1.7 inactivation. Standard patch-clamp electrophysiology was used to study changes in channel properties. Results from this dissertation demonstrate that (1) PEPD mutations significantly shift the voltage-dependent properties of Nav1.7 channels, destabilize an inactivated state in a residue specific manner, and render nociceptive neurons hyperexcitable; (2) alternative splicing can functionally impact PEPD; (3) channelopathies, resulting from slowed inactivation in neuronal and muscle VGSC isoforms, increase an unusual sodium conductance that flows during repolarization; and (4) specific residues located in distinct regions of Nav1.7 serve as docking sites to stabilize inactivation at different membrane potentials. Overall, this dissertation answers key questions regarding the molecular mechanics required during inactivation and the biophysical consequences of Nav1.7 mutations implicated in painful disorders. The results of this dissertation are important for a more detailed understanding of pain perception and validate the applicability of studying Nav1.7 for discovery of therapeutic targets for treatment of pain. – Theodore R. Cummins, ChairItem Interplay between collapsin response mediator protein 2 (CRMP2) phosphorylation and sumoylation modulates NaV1.7 trafficking(2015-07-06) Dustrude, Erik Thomas; Brustovetsky, Nickolay; Khanna, Rajesh; Cummins, Theodore R.; Jerde, Travis; Obukhov, AlexanderThe voltage-gated sodium channel Nav1.7 has gained traction as a pain target with recognition that loss-of-function mutations in SCN9A, the gene encoding Nav1.7, are associated with congenital insensitivity to pain, whereas gain-of-function mutations produce distinct pain syndromes due to increased Nav1.7 activity. Selective inhibition of Nav1.7 is fundamental to modulating pain via this channel. Understanding the regulation of Nav1.7 at the cellular and molecular level is critical for advancing better therapeutics for pain. Although trafficking of Nav1.7 remains poorly understood, recent studies have begun to investigate post-translational modifications of Navs and/or auxiliary subunits as well as protein-protein interactions as Nav-trafficking mechanisms. Here, I tested if post-translational modifications of a novel Nav1.7-interacting protein, the axonal collapsin response mediator protein 2 (CRMP2) by small ubiquitin-like modifier (SUMO) and phosphorylation could affect Nav trafficking and function. Expression of a CRMP2 SUMOylation incompetent mutant (CRMP2-K374A) in neuronal model CAD cells, which express predominantly Nav1.7 currents, led to a significant reduction in huwentoxin-IV-sensitive Nav1.7 currents. Increasing deSUMOylation with sentrin/SUMO-specific protease SENP1 or SENP2 in wildtype CRMP2-expressing CAD cells decreased Nav1.7 currents. Consistent with reduced current density, biotinylation revealed significant reduction in surface Nav1.7 levels of CAD cells expressing CRMP2-K374A or SENP proteins. Diminution of Nav1.7 sodium current was recapitulated in sensory neurons expressing CRMP2-K374A. Because CRMP2 functions are regulated by its phosphorylation state, I next investigated possible interplay between phosphorylation and SUMOylation of CRMP2 on Nav1.7. Phosphorylation of CRMP2 by cyclin dependent kinase 5 (Cdk5) was necessary for maintaining Nav1.7 surface expression and current density whereas phosphorylation by Fyn kinase reduced CRMP2 SUMOylation and Nav1.7 current density. Binding to Nav1.7 was decreased following (i) loss of CRMP2 SUMOylation, (ii) loss of CRMP2 phosphorylation by Cdk5, or (iii) gain of CRMP2 phosphorylation by Fyn. Altering CRMP2 modification events simultaneously was not synergistic in reducing Nav1.7 currents, suggesting that Nav1.7 co-opts multiple CRMP2 modifications for regulatory control of this channel. Loss of either CRMP2 SUMOylation or Cdk5 phosphorylation triggered Nav1.7 internalization involving E3 ubiquitin ligase Nedd4-2 as well as endocytosis adaptor proteins Numb and Eps15. Collectively, my findings identify a novel mechanism for regulation of Nav1.7.