- Browse by Subject
Browsing by Subject "Natural killer (NK) cells"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item ENHANCING THE TUMOR FIGHTING CAPACITY OF NK CELLS THROUGH THE USE OF SOYPEPTIDE(Office of the Vice Chancellor for Research, 2012-04-13) Lewis, David; Chang, Hua-Chen; Han, Ling; Voiles, Larry; Henriquez, Sarah M.P.Natural killer or (NK) cells are important components of the innate immune system, which play a major role in the rejection of tumors, and virally in-fected cells. By producing pro-inflammatory cytokines such as IFN-gamma, NK cells are able to exert immunoregulatory functions that influence the adaptive immunity of other immune cells. Due to its critical role in tumor inhibition, researchers, utilizing various cytokines, including IL-12 and IL-2, have fervently pursued the manipulation of NK activity. NK cells respond to cytokines in a dose-dependent manner; however, the toxicity of certain cy-tokines (like IL-2) in high doses prohibits their widespread clinical use. Therefore, efforts to activate NK cells without requiring high doses of cyto-kines is warranted. We recently exploited a soy derived dietary peptide called lunasin to improve the immune functions. The hypothesis was that the lunasin peptide has stimulatory effects on immune cells. To test this hy-pothesis, human peripheral blood mononuclear cells (PBMCs) of healthy do-nors were stimulated with and without lunasin in combination with cytokines IL-12 or IL-2. Our results showed that the lunasin peptide exerts a robust synergistic effect when combined with the selected cytokines. This effect ap-pears to regulate the expression of a number of genes that are important for NK activity. Our findings support the potential clinical use of lunasin in com-bination with cytokine to enhance the tumor fighting capacity of NK cells.Item Image-based assessment of natural killer cell activity against glioblastoma stem cells(Wiley, 2024) Du, Yuanning; Metcalfe, Samuel; Akunapuram, Shreya; Ghosh, Sugata; Spruck, Charles; Richardson, Angela M.; Cohen‐Gadol, Aaron A.; Shen, Jia; Neurological Surgery, School of MedicineGlioblastoma (GBM) poses a significant challenge in oncology and stands as the most aggressive form of brain cancer. A primary contributor to its relentless nature is the stem-like cancer cells, called glioblastoma stem cells (GSCs). GSCs have the capacity for self-renewal and tumorigenesis, leading to frequent GBM recurrences and complicating treatment modalities. While natural killer (NK) cells exhibit potential in targeting and eliminating stem-like cancer cells, their efficacy within the GBM microenvironment is limited due to constrained infiltration and function. To address this limitation, novel investigations focusing on boosting NK cell activity against GSCs are imperative. This study presents two streamlined image-based assays assessing NK cell migration and cytotoxicity towards GSCs. It details protocols and explores the strengths and limitations of these methods. These assays could aid in identifying novel targets to enhance NK cell activity towards GSCs, facilitating the development of NK cell-based immunotherapy for improved GBM treatment.Item Unlocking Glioblastoma Secrets: Natural Killer Cell Therapy against Cancer Stem Cells(MDPI, 2023-12-14) Du, Yuanning; Pollok, Karen E.; Shen, Jia; Medical and Molecular Genetics, School of MedicineGlioblastoma (GBM) represents a paramount challenge as the most formidable primary brain tumor characterized by its rapid growth, aggressive invasiveness, and remarkable heterogeneity, collectively impeding effective therapeutic interventions. The cancer stem cells within GBM, GBM stem cells (GSCs), hold pivotal significance in fueling tumor advancement, therapeutic refractoriness, and relapse. Given their unique attributes encompassing self-renewal, multipotent differentiation potential, and intricate interplay with the tumor microenvironment, targeting GSCs emerges as a critical strategy for innovative GBM treatments. Natural killer (NK) cells, innate immune effectors recognized for their capacity to selectively detect and eliminate malignancies without the need for prior sensitization, offer substantial therapeutic potential. Harnessing the inherent capabilities of NK cells can not only directly engage tumor cells but also augment broader immune responses. Encouraging outcomes from clinical investigations underscore NK cells as a potentially effective modality for cancer therapy. Consequently, NK cell-based approaches hold promise for effectively targeting GSCs, thereby presenting an avenue to enhance treatment outcomes for GBM patients. This review outlines GBM's intricate landscape, therapeutic challenges, GSC-related dynamics, and elucidates the potential of NK cell as an immunotherapeutic strategy directed towards GSCs.