- Browse by Subject
Browsing by Subject "Naphthalimides"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inhibition of CaMKK2 reverses age-associated decline in bone mass(Elsevier, 2015-06) Pritchard, Zachary J.; Cary, Rachel L.; Yang, Chang; Novack, Deborah V.; Voor, Michael J.; Sankar, Uma; Department of Anatomy & Cell Biology, IU School of MedicineDecline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca(2+)/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual, mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study, we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume, microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age, WT mice sustain a significant decline in trabecular bone volume, microarchitecture and strength as well as cortical bone strength. However, treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume, quality, as well as trabecular and cortical bone strength. We also observed that regardless of age, male Camkk2(-/-) mice possessed significantly elevated trabecular bone volume, microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice, implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further, whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral mid-shaft geometry, the mid-shaft cortical wall thickness and material bending stress remained similar among the cohorts, implying that regardless of treatment, the material properties of the bone remain similar. Thus, our cumulative results provide evidence for the pharmacological inhibition of CaMKK2 as a bone anabolic strategy in combating age-associated osteoporosis.Item Systemic Inhibition or Global Deletion of CaMKK2 Protects Against Post-Traumatic Osteoarthritis(Elsevier, 2022) Mével, Elsa; Shutter, Jennifer A.; Ding, Xinchun; Mattingly, Brett T.; Williams, Justin N.; Li, Yong; Huls, Anthony; Kambrath, Anuradha Valiya; Trippel, Stephen B.; Wagner, Diane; Allen, Matthew R.; O’Keefe, Regis; Thompson, William R.; Burr, David B.; Sankar, Uma; Anatomy, Cell Biology and Physiology, School of MedicineObjective: To investigate the role of Ca2+/calmodulin-dependent protein kinase 2 (CaMKK2) in post-traumatic osteoarthritis (PTOA). Methods: Destabilization of the medial meniscus (DMM) or sham surgeries were performed on 10-week-old male wild-type (WT) and Camkk2-/- mice. Half of the DMM-WT mice and all other cohorts (n = 6/group) received tri-weekly intraperitoneal (i.p.) injections of saline whereas the remaining DMM-WT mice (n = 6/group) received i.p. injections of the CaMKK2 inhibitor STO-609 (0.033 mg/kg body weight) thrice a week. Study was terminated at 8- or 12-weeks post-surgery, and knee joints processed for microcomputed tomography imaging followed by histology and immunohistochemistry. Primary articular chondrocytes were isolated from knee joints of 4-6-day-old WT and Camkk2-/- mice, and treated with 10 ng/ml interleukin-1β (IL)-1β for 24 or 48 h to investigate gene and protein expression. Results: CaMKK2 levels and activity became elevated in articular chondrocytes following IL-1β treatment or DMM surgery. Inhibition or absence of CaMKK2 protected against DMM-associated destruction of the cartilage, subchondral bone alterations and synovial inflammation. When challenged with IL-1β, chondrocytes lacking CaMKK2 displayed attenuated inflammation, cartilage catabolism, and resistance to suppression of matrix synthesis. IL-1β-treated CaMKK2-null chondrocytes displayed decreased IL-6 production, activation of signal transducer and activator of transcription 3 (Stat3) and matrix metalloproteinase 13 (MMP13), indicating a potential mechanism for the regulation of inflammatory responses in chondrocytes by CaMKK2. Conclusions: Our findings reveal a novel function for CaMKK2 in chondrocytes and highlight the potential for its inhibition as an innovative therapeutic strategy in the prevention of PTOA.