- Browse by Subject
Browsing by Subject "Nanoparticles"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2(Springer Nature, 2023) Yin, Qian; Luo, Wei; Mallajosyula, Vamsee; Bo, Yang; Guo, Jing; Xie, Jinghang; Sun, Meng; Verma, Rohit; Li, Chunfeng; Constantz, Christian M.; Wagar, Lisa E.; Li, Jing; Sola, Elsa; Gupta, Neha; Wang, Chunlin; Kask, Oliver; Chen, Xin; Yuan, Xue; Wu, Nicholas C.; Rao, Jianghong; Chien, Yueh-hsiu; Cheng, Jianjun; Pulendran, Bali; Davis, Mark M.; Microbiology and Immunology, School of MedicineThe ideal vaccine against viruses such as influenza and SARS-CoV-2 must provide a robust, durable and broad immune protection against multiple viral variants. However, antibody responses to current vaccines often lack robust cross-reactivity. Here we describe a polymeric Toll-like receptor 7 agonist nanoparticle (TLR7-NP) adjuvant, which enhances lymph node targeting, and leads to persistent activation of immune cells and broad immune responses. When mixed with alum-adsorbed antigens, this TLR7-NP adjuvant elicits cross-reactive antibodies for both dominant and subdominant epitopes and antigen-specific CD8+ T-cell responses in mice. This TLR7-NP-adjuvanted influenza subunit vaccine successfully protects mice against viral challenge of a different strain. This strategy also enhances the antibody response to a SARS-CoV-2 subunit vaccine against multiple viral variants that have emerged. Moreover, this TLR7-NP augments antigen-specific responses in human tonsil organoids. Overall, we describe a nanoparticle adjuvant to improve immune responses to viral antigens, with promising implications for developing broadly protective vaccines.Item Au nanoparticle assembly on cnts using flash induced solid-state dewetting(2015-04-28) Kulkarni, Ameya; Ryu, Jong Eun; Agarwal, Mangilal; Xie, Jian; Cheng, RuihuaCarbon Nanotubes (CNTs) are used extensively in various applications where substrate are required to be possessing higher surface area, porosity and electrical and thermal conductivity. Such properties can be enhanced to target a particular gas and biochemical for efficient detection when CNT matrix is functionalized with Nanoparticles (NPs). Conventional functionalization involves harsh oxidation repeated washing, filtration and sonication, which induce defects. The defects lead to hindered mobility of carriers, unwanted doping and also fragmentation of the CNTs in some cases. In this document we demonstrate functionalization of CNT with Au nanoparticles on a macro scale under dry and ambient condition using Xenon ash induced solid-state dewetting. A sputtered thin film was transformed into nanoparticles which were confirmed to be in a state of thermodynamic equilibrium. We worked on 3 nm, 6 nm, 9 nm, 15 nm, 30 nm initial thickness of thin films. Xenon ash parameters of energy, number of pulse, duration of pulse, duration of gap between consecutive pulses were optimized to achieve complete dewetting of Au thin films. 3 nm deposition was in the form of irregular nano-islands which were transformed into stable nanoparticles with a single shot of 10 J/cm2 of 2 ms duration. 6 nm and 9 nm deposition was in form of continues film which was also dewetted into stable nanoparticles with a single pulse but with an increased energy density of 20 J/cm2 and 35 J/cm2 respectively. In case of 15 nm and 30 nm deposition the thin film couldn't be dewetted with a maximum energy density of 50 J/cm2, it was observed that 3 and 4 pulses of 2 ms pulse duration and 2 ms gap duration with an energy density of 50 J/cm2 were required to completely dewet the thicker films. However irregularity was induced in the sizes of the NPs due to Ostwald ripening phenomenon which causes smaller particle within a critical difiusion length to combine and form a larger particle during or after dewetting process. For comparison, the Au thin films were also dewetted by a conventional process involving annealing of samples until the thin film was fully transformed into NPs and the size of NPs seized to grow. Scanning electron microscope (SEM) was used to characterize the samples. Thermodynamic stability of the particles was confirmed with statistical analyses of size distribution after every additional pulse.Item Bone-Induced Expression of Integrin β3 Enables Targeted Nanotherapy of Breast Cancer Metastases(American Association for Cancer Research, 2017-11-15) Ross, Michael H.; Esser, Alison K.; Fox, Gregory C.; Schmieder, Anne H.; Yang, Xiaoxia; Hu, Grace; Pan, Dipanjan; Su, Xinming; Xu, Yalin; Novack, Deborah V.; Walsh, Thomas; Colditz, Graham A.; Lukaszewicz, Gabriel H.; Cordell, Elizabeth; Novack, Joshua; Fitzpatrick, James. A.J.; Waning, David L.; Mohammad, Khalid S.; Guise, Theresa A.; Lanza, Gregory M.; Weilbaecher, Katherine N.; Medicine, School of MedicineBone metastases occur in approximately 70% of metastatic breast cancer patients, often leading to skeletal injuries. Current treatments are mainly palliative and underscore the unmet clinical need for improved therapies. In this study, we provide preclinical evidence for an antimetastatic therapy based on targeting integrin β3 (β3), which is selectively induced on breast cancer cells in bone by the local bone microenvironment. In a preclinical model of breast cancer, β3 was strongly expressed on bone metastatic cancer cells, but not primary mammary tumors or visceral metastases. In tumor tissue from breast cancer patients, β3 was significantly elevated on bone metastases relative to primary tumors from the same patient (n = 42). Mechanistic investigations revealed that TGFβ signaling through SMAD2/SMAD3 was necessary for breast cancer induction of β3 within the bone. Using a micelle-based nanoparticle therapy that recognizes integrin αvβ3 (αvβ3-MPs of ∼12.5 nm), we demonstrated specific localization to breast cancer bone metastases in mice. Using this system for targeted delivery of the chemotherapeutic docetaxel, we showed that bone tumor burden could be reduced significantly with less bone destruction and less hepatotoxicity compared with equimolar doses of free docetaxel. Furthermore, mice treated with αvβ3-MP-docetaxel exhibited a significant decrease in bone-residing tumor cell proliferation compared with free docetaxel. Taken together, our results offer preclinical proof of concept for a method to enhance delivery of chemotherapeutics to breast cancer cells within the bone by exploiting their selective expression of integrin αvβ3 at that metastatic site.Item Clickable modular polysaccharide nanoparticles for selective cell-targeting(Elsevier, 2020-04-15) Peuler, Kevin; Dimmitt, Nathan; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyA therapeutic nanocarrier capable of cell targeting has the potential to reduce off-target effects of otherwise effective drugs. Nanoparticle surface modification can be tailored for specific cells, however multistep surface modification can prove slow and difficult for a variety of cell types. Here, we designed drug carrying polysaccharide based nanoparticles with a layered structure for clickable surface modification. The center of nanoparticle was composed of cationic macromer (e.g., poly-L-lysine) and anionic polysaccharide (e.g., heparin). Furthermore, a ‘clickable’ polysaccharide was installed on the surface of the nanoparticles to permit a wide range of bioconjugation via norbornene-tetrazine click chemistry. The utilities of these layered nanoparticles were demonstrated via enhanced protein sequestration, selective cell targeting (via PEGylation or altering polysaccharide coating), as well as loading and release of chemotherapeutic. The drug-loaded nanocarriers proved cytotoxic to J774A.1 monocytes and MOLM-14 leukemia cells.Item Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation(Elsevier, 2014-02-28) Lu, Ying; Wang, Zhao-hui; Li, Tonglei; McNally, Helen; Park, Kinam; Sturek, Michael; Department of Cellular & Integrative Physiology, IU School of MedicineThe aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy.Item Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells(Springer Nature, 2022-06-29) Bui, Loan; Edwards, Shanique; Hall, Eva; Alderfer, Laura; Round, Kellen; Owen, Madeline; Sainaghi, Pietro; Zhang, Siyuan; Nallathamby, Prakash D.; Haneline, Laura S.; Hanjaya-Putra, Donny; Pediatrics, School of MedicineFetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine.Item Functional Effects of Nanoparticle Exposure on Calu-3 Airway Epithelial Cells(2012) Banga, Amiraj; Witzmann, Frank A.; Petrache, Horia I.; Blazer-Yost, BonnieHigh concentrations of manufactured carbon nanoparticles (CNP) are known to cause oxidative stress, inflammatory responses and granuloma formation in respiratory epithelia. To examine the effects of lower, more physiologically relevant concentrations, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in transepithelial permeability and cellular function of airway epithelia after exposure to environmentally realistic concentrations of carbon nanoparticles. Three common carbon nanoparticles, fullerenes, single- and multi-wall carbon nanotubes (SWCNT, MWCNT) were used in these experiments. Electrophysiological measurements were performed to assay transepithelial electrical resistance (TEER) and epinephrine-stimulated chloride (Cl(-)) ion secretion of epithelial cell monolayers that had been exposed to nanoparticles for three different times (1 h, 24 h and 48 h) and over a 7 log unit range of concentrations. Fullerenes did not have any effect on the TEER or stimulated ion transport. However, the carbon nanotubes (CNT) significantly decreased TEER and inhibited epinephrine-stimulated Cl(-) secretion. The changes were time dependent and at more chronic exposures caused functional effects which were evident at concentrations substantially lower than have been previously examined. The functional changes manifested in response to physiologically relevant exposures would inhibit mucociliary clearance mechanisms and compromise the barrier function of airway epithelia.Item In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles(Springer, 2021) Nguyen, Tyler; Gao, Jianhua; Wang, Ping; Nagesetti, Abhignyan; Andrews, Peter; Masood, Sehban; Vriesman, Zoe; Liang, Ping; Khizroev, Sakhrat; Jin, Xiaoming; Anatomy, Cell Biology and Physiology, School of MedicineWireless and precise stimulation of deep brain structures could have important applications to study intact brain circuits and treat neurological disorders. Herein, we report that magnetoelectric nanoparticles (MENs) can be guided to a targeted brain region to stimulate brain activity with a magnetic field. We demonstrated the nanoparticles' capability to reliably evoke fast neuronal responses in cortical slices ex vivo. After fluorescently labeled MENs were intravenously injected and delivered to a targeted brain region by applying a magnetic field gradient, a magnetic field of low intensity (350-450 Oe) applied to the mouse head reliably evoked cortical activities, as revealed by two-photon and mesoscopic imaging of calcium signals and by an increased number of c-Fos expressing cells after stimulation. Neither brain delivery of MENs nor the magnetic stimulation caused significant increases in astrocytes and microglia. Thus, MENs could enable a non-invasive and contactless deep brain stimulation without the need of genetic manipulation.Item In-situ cryo-immune engineering of tumor microenvironment with cold-responsive nanotechnology for cancer immunotherapy(Springer Nature, 2023-01-24) Ou, Wenquan; Stewart, Samantha; White, Alisa; Kwizera, Elyahb A.; Xu, Jiangsheng; Fang, Yuanzhang; Shamul, James G.; Xie, Changqing; Nurudeen, Suliat; Tirada, Nikki P.; Lu, Xiongbin; Tkaczuk, Katherine H. R.; He, Xiaoming; Medical and Molecular Genetics, School of MedicineCancer immunotherapy that deploys the host’s immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically “cold” into “hot”. In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes “frostbite” of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.Item Involvement of Intermediate Sulfur Species in Biological Reduction of Elemental Sulfur under Acidic, Hydrothermal Conditions(American Society for Microbiology, 2013) Boyd, Eric S.; Druschel, Gregory K.; Earth and Environmental Sciences, School of ScienceThe thermoacidophile and obligate elemental sulfur (S(8)(0))-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S(8)(0)-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H(2)S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S(8)(0) and the biologically produced H(2)S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S(8)(0) was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S(8)(0) can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S(8)(0) provided as a solid phase in the medium or with S(8)(0) sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S(8)(0) sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S(8)(0) provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S(8)(0) particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S(8)(0) particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens.