- Browse by Subject
Browsing by Subject "Nanomaterials"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item 2D transition metal carbides (MXenes) in metal and ceramic matrix composites(Springer, 2021-06-02) Wyatt, Brian C.; Nemani, Srinivasa Kartik; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional transition metal carbides, nitrides, and carbonitrides (known as MXenes) have evolved as competitive materials and fillers for developing composites and hybrids for applications ranging from catalysis, energy storage, selective ion filtration, electromagnetic wave attenuation, and electronic/piezoelectric behavior. MXenes’ incorporation into metal matrix and ceramic matrix composites is a growing field with significant potential due to their impressive mechanical, electrical, and chemical behavior. With about 50 synthesized MXene compositions, the degree of control over their composition and structure paired with their high-temperature stability is unique in the field of 2D materials. As a result, MXenes offer a new avenue for application driven design of functional and structural composites with tailorable mechanical, electrical, and thermochemical properties. In this article, we review recent developments for use of MXenes in metal and ceramic composites and provide an outlook for future research in this field.Item Characterization and Simulated Analysis of Carbon Fiber with Nanomaterials and Additive Manufacturing(2023-12) Omole, Oluwaseun; Dalir, Hamid; Agarwal, Magilal; Tovar, AndresDue to the vast increase and versatility of Additive Manufacturing and 3D-printing, in this study, the mechanical behavior of implementing both continuous and short carbon fiber within Nylon and investigated for its effectiveness within additively manufactured prints. Here, 0.1wt% of pure nylon was combined with carbon nanotubes through both dry and heat mixing to determine the best method and used to create printable filaments. Compression, tensile and short beam shear (SBS) samples were created and tested to determine maximum deformation and were simulated using ANSYS and its ACP Pre tool. SEM imaging was used to analyze CNT integration within the nylon filament, as well as the fractography of tested samples. Experimental testing shows that compressive strength increased by 28%, and the average SBS samples increased by 8% with minimal impacts on the tensile strength. The simulated results for Nylon/CF tensile samples were compared to experimental results and showed that lower amounts of carbon fiber samples tend to have lower errors.Item Design and Fabrication of High Capacity Lithium-Ion Batteries using Electro-Spun Graphene Modified Vanadium Pentoxide Cathodes(2019-08) Ahmadian, Amirhossein; Agarwal, Mangilal; Xie, Jian; Dalir, HamidElectrospinning has gained immense interests in recent years due to its potential application in various fields, including energy storage application. The V2O5/GO as a layered crystal structure has been demonstrated to fabricate nanofibers with diameters within a range of ~300nm through electrospinning technique. The porous, hollow, and interconnected nanostructures were produced by electrospinning formed by polymers such as Polyvinylpyrrolidone (PVP) and Polyvinyl alcohol (PVA), separately, as solvent polymers with electrospinning technique. In this study, we investigated the synthesis of a graphene-modified nanostructured V2O5 through modified sol-gel method and electrospinning of V2O5/GO hybrid. Electrochemical characterization was performed by utilizing Arbin Battery cycler, Field Emission Scanning Electron Microscopy (FESEM), X-ray powder diffraction (XRD), Thermogravimetric analysis (TGA), Mercury Porosimetry, and BET surface area measurement. As compared to the other conventional fabrication methods, our optimized sol-gel method, followed by the electrospinning of the cathode material achieved a high initial capacity of 342 mAh/g at a high current density of 0.5C (171 mA/g) and the capacity retention of 80% after 20 cycles. Also, the prepared sol-gel method outperforms the pure V2O5 cathode material, by obtaining the capacity almost two times higher. The results of this study showed that post-synthesis treatment of cathode material plays a prominent role in electrochemical performance of the nanostructured vanadium oxides. By controlling the annealing and drying steps, and time, a small amount of pyrolysis carbon can be retained, which improves the conductivity of the V2O5 nanorods. Also, controlled post-synthesis helped us to prevent aggregation of electro-spun twisted nanostructured fibers which deteriorates the lithium diffusion process during charge/discharge of batteries.Item Modeling Nanomaterials in Lithium Ion Battery with Experimental Validation(Office of the Vice Chancellor for Research, 2015-04-17) Johnson, Chanel; Hammans, Andrea; Hurtman, James; Clyde, David; Wu, Linmin; Jung, Yeon-Gil; Zhang, JingA lithium-ion battery (Li-ion battery or LIB) is a rechargeable battery type in which lithium ions move from the negative electrode to the positive electrode during discharge and back when charging. Lithium systems are of considerable interest due to their high energy density and low toxicity compared to other rechargeable lithium battery chemistries. Conventional Lithium-ion battery materials typically start as 10-50 micron sized particles. In many of these new chemistries, having the materials in nanoparticle form or as a nanostructured particle or film is critical to achieving the desired performance. The goal of this study is to understand the mechanisms that govern the size-dependence of electrochemical properties and mechanical properties of nanomaterials in Lithium ion batteries using first principles method. We have been developing computational models of LiCoO2 crystals. The specific objectives of the MURI project are to: (1) conduct first principles study of the electrochemical properties and mechanical properties of nanosize LiCoO2; (2) investigate Li ion diffusion phenomena in the nanomaterial; and (3) experimentally validate the computational results.Item TENSILE DEFORMATION BEHAVIOR AND MECHANICAL PROPERTY STUDY OF SIX FCC METALS(Office of the Vice Chancellor for Research, 2010-04-09) Heidenreich, Joseph; Wang, GuofengNanomaterials have enhanced mechanical properties in comparison to their respective bulk materials. To understand the effect of the size and shape on the mechanical properties of nanomaterials, we used molecular dynamics (MD) methods to simulate the deformation process of copper, gold, nickel, palladium, platinum, and silver nanowires of three cross-sectional shapes (quare, circular, and octagonal) and four diameters (varied from one to eight nanometers). In this work, the nanowires were subjected to a uniaxial tensile load in the [100] direction at a strain rate of 108 s-1 at a simulation temperature of 300 K. The embedded-atom method was employed to describe the many-body atomic interaction energy in metallic systems. The nanowires were stretched to failure and the corresponding stress-strain curves were produced. From these curves, mechanical properties including the elastic modulus, yield stress and strain, and ultimate strain were calculated. In addition to the MD approach, an energy method was applied to calculate the elastic modulus of each nanowire through exponential fitting of an energy function. Both methods used to calculate Young’s modulus qualitatively gave similar results indicating that as diameter decreases, Young’s modulus decreases. The atomic structures generated from MD simulations were examined in details to investigate the deformation and yield behavior of each nanowire. It was found that most nanowires yield and fail through partial dislocation nucleation and propagation leading to {111} slip. However, the octagonal platinum nanowire, whose diameter is 5 nm, was found to yield through reconstruction of the {011} surfaces into the more energetically favorable {111} surfaces.Item The utility and risks of therapeutic nanotechnology in the retina(Sage, 2021-03-22) Scheive, Melanie; Yazdani, Saeed; Hajrasouliha, Amir R.; Ophthalmology, School of MedicineThe clinical application of nanotechnology in medicine is promising for therapeutic, diagnostic, and surgical improvements in the near future. Nanotechnologies in nano-ophthalmology are in the early stages of application in clinical contexts, including ocular drug and gene delivery systems addressing eye disorders, particularly retinopathies. Retinal diseases are challenging to treat as current interventions, such as intravitreal injections, are limited by their invasive nature. This review examines nanotechnological approaches to retinal diseases in a clinical context. Nanotechnology has the potential to transform pharmacological and surgical interventions by overcoming limitations posed by the protective anatomical and physiological barriers that limit access to the retina. Preclinical research in the application of nanoparticles in diagnostics indicates that nanoparticles can enhance existing diagnostic and screening tools to detect diseases earlier and more easily and improve disease progression monitoring precision.