- Browse by Subject
Browsing by Subject "Nanoindentation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Calcimimetics Alter Periosteal and Perilacunar Bone Matrix Composition and Material Properties in Early Chronic Kidney Disease(Wiley, 2022) Damrath, John G.; Moe, Sharon M.; Wallace, Joseph M.; Medicine, School of MedicineChronic kidney disease (CKD) affects 15% of Americans and greatly increases fracture risk due to elevated parathyroid hormone, cortical porosity, and reduced bone material quality. Calcimimetic drugs are used to lower parathyroid hormone (PTH) in CKD patients, but their impact on bone matrix properties remains unknown. We hypothesized that tissue-level bone quality is altered in early CKD and that calcimimetic treatment will prevent these alterations. To test this hypothesis, we treated Cy/+ rats, a model of spontaneous and progressive CKD-mineral and bone disorder (CKD-MBD), with KP-2326, a preclinical analogue of etelcalcetide, early in the CKD disease course. To measure tissue-level bone matrix composition and material properties, we performed colocalized Raman spectroscopy and nanoindentation on new periosteal bone and perilacunar bone using hydrated femur sections. We found that CKD and KP treatment lowered mineral type B carbonate substitution whereas KP treatment increased mineral crystallinity in new periosteal bone. Reduced elastic modulus was lower in CKD but was not different in KP-treated rats versus CTRL. In perilacunar bone, KP treatment lowered type B carbonate substitution, increased crystallinity, and increased mineral-to-matrix ratio in a spatially dependent manner. KP treatment also increased reduced elastic modulus and hardness in a spatially dependent manner. Taken together, these data suggest that KP treatment improves material properties on the tissue level through a combination of lowering carbonate substitution, increasing mineral crystallinity, and increasing relative mineralization of the bone early in CKD. As a result, the mechanical properties were improved, and in some regions, were the same as control animals. Therefore, calcimimetics may help prevent CKD-induced bone deterioration by improving bone quality in new periosteal bone and in bone tissue near osteocyte lacunae.Item Effects of Raloxifene and tibial loading on bone mass and mechanics in male and female mice(Taylor & Francis, 2022) Berman, Alycia G.; Damrath, John G.; Hatch, Jennifer; Pulliam, Alexis N.; Powell, Katherine M.; Hinton, Madicyn; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyRaloxifene (RAL) is a selective estrogen receptor modulator (SERM) that has previously been shown to cause acellular benefits to bone tissue. Due to these improvements, RAL was combined with targeted tibial loading to assess if RAL treatment during periods of active bone formation would allow for further mechanical enhancements. To do so, structural, mechanical, and microstructural effects were assessed in bone from C57BL/6 mice that were treated with RAL (0.5 mg/kg), tibial loading, or both for 6 weeks, beginning at 10 weeks of age. Ex vivo microcomputed tomography (CT) images indicated RAL and loading work together to improve bone mass and architecture, especially within the cancellous region of males. Increases in cancellous bone volume fraction were heavily driven by increases in trabecular thickness, though there were some effects on trabecular spacing and number. In the cortical regions, RAL and loading both increased cross-sectional area, cortical area, and cortical thickness. Whole-bone mechanical testing primarily indicated effects of loading. Further characterization through Raman spectroscopy and nanoindentation showed load-based changes in mineralization and micromechanics, while both loading and RAL caused changes in the secondary collagen structure. In contrast to males, in females, there were large load-based effects in the cancellous and cortical regions, resulting in increased whole-bone mechanical properties. RAL had less of an effect on cancellous and cortical architecture, though some effects were still present. In conclusion, RAL and loading work together to impact bone architecture and mechanical integrity, leading to greater improvements than either treatment individually.