ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Nanofiber scaffolds"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Engineering the electrospinning of MWCNTs/epoxy nanofiber scaffolds to enhance physical and mechanical properties of CFRPs
    (Elsevier, 2021-09) Wable, Vidya; Biswas, Pias Kumar; Moheimani, Reza; Aliahmad, Nojan; Omole, Peter; Siegel, Amanda P.; Agarwal, Mangilal; Dalir, Hamid; Mechanical Engineering, School of Engineering and Technology
    A cost-effective approach to improve the physical and mechanical properties of carbon fiber reinforced polymer (CFRP) prepreg composites, where electrospun multiwalled carbon nanotubes (MWCNTs)/epoxy nanofibers were synthesized and incorporated in between the layers of conventional CFRP prepreg composite has been presented. MWCNT-aligned epoxy nanofibers were successfully produced by an optimized electrospinning process. Nanofibers were deposited directly onto prepreg layers to achieve improved adhesion and interfacial bonding, leading to added strength and improvements in other mechanical properties. Thus, interlaminar shear strength (ILSS) and fatigue performance at high-stress regimes increased by 29% and 27%, respectively. Barely visible impact damage (BVID) energy increased significantly by up to 45%. The thermal and electrical conductivities were also enhanced significantly due to the presence of the highly conductive MWCNT networks between the CFRP layers. The presented method was capable of uniformly depositing high contents of MWCNTs at interlaminar ply interface of prepregs to strengthen/enhance CFRP properties, which has not been previously shown to be possible due to high resin viscosity caused by randomly oriented MWCNTs in epoxy system.
  • Loading...
    Thumbnail Image
    Item
    Interfacial Toughening Of Carbon Fiber Reinforced Polymer (CFRP) Matrix Composites Using MWCNTs/Epoxy Nanofiber Scaffolds
    (2021-05) Wable, Vidya Balu; Dalir, Hamid; Agarwal, Mangilal; Tovar, Andres
    This study represents a cost-effective method to advance the physical and mechanical properties of carbon fiber-reinforced polymer (CFRP) prepreg composite materials, where electrospun multiwalled carbon nanotubes (CNTs)/epoxy nanofibers fabricated and deposited in between the layers of traditional CFRP prepreg composite. CNT-aligned epoxy nanofibers were uniformly formed by an optimized electrospinning method. Electrospinning is considered one of the most flexible, low-cost, and globally recognized methods for generating continuous filaments from submicron to tens of nanometer diameter. Nanofilaments were incorporated precisely on the layers of prepreg to accomplish increased adhesion and interfacial bonding, leading to increased strength and enhancements in more mechanical properties. As a result, the modulus of the epoxy and CNT/epoxy nanofibers were revealed to be 3.24 GPa and 4.84 GPa, leading to 49% enhancement. Furthermore, interlaminar shear strength (ILSS) and fatigue performance at high-stress regimes improved by 29% and 27%, respectively. Barely visible impact damage (BVID) energy improved considerably by up to 45%. The thermal and electrical conductivities were also increased considerably because of the highly conductive CNT networks present in between the CFRP layers. The newly introduced approach was able to deposit high content uniform CNTs at the ply interface of prepregs to enhance the CFRP properties, that has not been achieved in the past because of the randomly oriented high viscosity CNTs in epoxy resins.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University