- Browse by Subject
Browsing by Subject "NODDI"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study(Elsevier, 2016-03) Kodiweera, Chandana; Alexander, Andrew L.; Andrew L., Jaroslaw; McAllister, Thomas W.; Wu, Yu-Chien; Department of Biostatistics, Richard M. Fairbanks School of Public HealthMicrostructural changes in human brain white matter of young to middle-aged adults were studied using advanced diffusion Magnetic Resonance Imaging (dMRI). Multiple shell diffusion-weighted data were acquired using the Hybrid Diffusion Imaging (HYDI). The HYDI method is extremely versatile and data were analyzed using Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion and Density Imaging (NODDI), and q-space imaging approaches. Twenty-four females and 23 males between 18 and 55years of age were included in this study. The impact of age and sex on diffusion metrics were tested using least squares linear regressions in 48 white matter regions of interest (ROIs) across the whole brain and adjusted for multiple comparisons across ROIs. In this study, white matter projections to either the hippocampus or the cerebral cortices were the brain regions most sensitive to aging. Specifically, in this young to middle-aged cohort, aging effects were associated with more dispersion of white matter fibers while the tissue restriction and intra-axonal volume fraction remained relatively stable. The fiber dispersion index of NODDI exhibited the most pronounced sensitivity to aging. In addition, changes of the DTI indices in this aging cohort were correlated mostly with the fiber dispersion index rather than the intracellular volume fraction of NODDI or the q-space measurements. While men and women did not differ in the aging rate, men tend to have higher intra-axonal volume fraction than women. This study demonstrates that advanced dMRI using a HYDI acquisition and compartmental modeling of NODDI can elucidate microstructural alterations that are sensitive to age and sex. Finally, this study provides insight into the relationships between DTI diffusion metrics and advanced diffusion metrics of NODDI model and q-space imaging.Item Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI) acquisition scheme(Elsevier, 2016-06) Kodiweera, Chandana; Wu, Yu-Chien; Department of Radiology and Imaging Sciences, IU School of MedicineThis article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), "Hybrid diffusion imaging"[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, "NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain"[2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI) technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid), anisotropic hindered diffusion (e.g., extracellular space), and anisotropic restricted diffusion (e.g., intracellular space). The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI) averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article "Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study" [3].Item Detecting white matter alterations in multiple sclerosis using advanced diffusion magnetic resonance imaging(Wolters Kluwer, 2019-01) Mustafi, Sourajit M.; Harezlak, Jaroslaw; Kodiweera, Chandana; Randolph, Jennifer S.; Ford, James C.; Wishart, Heather A.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineMultiple sclerosis is a neurodegenerative and inflammatory disease, a hallmark of which is demyelinating lesions in the white matter. We hypothesized that alterations in white matter microstructures can be non-invasively characterized by advanced diffusion magnetic resonance imaging. Seven diffusion metrics were extracted from hybrid diffusion imaging acquisitions via classic diffusion tensor imaging, neurite orientation dispersion and density imaging, and q-space imaging. We investigated the sensitivity of the diffusion metrics in 36 sets of regions of interest in the brain white matter of six female patients (age 52.8 ± 4.3 years) with multiple sclerosis. Each region of interest set included a conventional T2-defined lesion, a matched perilesion area, and normal-appearing white matter. Six patients with multiple sclerosis (n = 5) or clinically isolated syndrome (n = 1) at a mild to moderate disability level were recruited. The patients exhibited microstructural alterations from normal-appearing white matter transitioning to perilesion areas and lesions, consistent with decreased tissue restriction, decreased axonal density, and increased classic diffusion tensor imaging diffusivity. The findings suggest that diffusion compartment modeling and q-space analysis appeared to be sensitive for detecting subtle microstructural alterations between perilesion areas and normal-appearing white matter.Item Hybrid Diffusion Imaging in Mild Traumatic Brain Injury(Mary Ann Liebert, 2018-10-15) Wu, Yu-Chien; Mustafi, Sourajit M.; Harezlak, Jaroslaw; Kodiweera, Chandana; Flashman, Laura A.; McAllister, Thomas W.; Radiology and Imaging Sciences, School of MedicineMild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white matter alterations in 19 patients with mTBI and 23 other trauma control patients. Within 15 days (standard deviation = 10) of brain injury, all subjects underwent magnetic resonance HYDI and were assessed with a battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) was used for voxel-wise statistical analyses within the white matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between-group interaction effects. The advanced diffusion imaging techniques, including neurite orientation dispersion and density imaging (NODDI) and q-space analyses, appeared to be more sensitive then classic diffusion tensor imaging. Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5-9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests, including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between groups (R2 > 0.71 and pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients >0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white matter changes shortly after mTBI. These techniques hold promise as a neuroimaging biomarker for mTBI.Item White matter alterations in early-stage Alzheimer's disease: A tract-specific study(Elsevier, 2019-08-21) Wen, Qiuting; Mustafi, Sourajit M.; Li, Junjie; Risacher, Shannon L.; Tallman, Eileen; Brown, Steven A.; West, John D.; Harezlak, Jaroslaw; Farlow, Martin R.; Unverzagt, Frederick W.; Gao, Sujuan; Apostolova, Liana G.; Saykin, Andrew J.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineIntroduction: Diffusion magnetic resonance imaging may allow for microscopic characterization of white matter degeneration in early stages of Alzheimer's disease. Methods: Multishell Diffusion magnetic resonance imaging data were acquired from 100 participants (40 cognitively normal, 38 with subjective cognitive decline, and 22 with mild cognitive impairment [MCI]). White matter microscopic degeneration in 27 major tracts of interest was assessed using diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging, and q-space imaging. Results: Lower DTI fractional anisotropy and higher radial diffusivity were observed in the cingulum, thalamic radiation, and forceps major of participants with MCI. These tracts of interest also had the highest predictive power to discriminate groups. Diffusion metrics were associated with cognitive performance, particularly Rey Auditory Verbal Learning Test immediate recall, with the highest association observed in participants with MCI. Discussion: While DTI was the most sensitive, neurite orientation dispersion and density imaging and q-space imaging complementarily characterized reduced axonal density accompanied with dispersed and less restricted white matter microstructures.