ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "NMDA receptors"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Decreased sensitivity of NMDA receptors on dopaminergic neurons from the posterior ventral tegmental area following chronic nondependent alcohol consumption
    (Wiley, 2012) Fitzgerald, Griffin J.; Liu, Hai; Morzorati, Sandra L.; Psychiatry, School of Medicine
    Background: The mesocorticolimbic dopamine system mediates the reinforcing effects of salient stimuli, including drugs of abuse. Nondependent chronic alcohol consumption modifies this system, resulting in an increased number of spontaneously active dopamine neurons in the posterior ventral tegmental area (VTA) of alcohol-preferring (P) rats. Enhanced responses of postsynaptic glutamate receptors may contribute to the increase in active dopamine neurons. Thus, excitations of putative dopamine neurons to locally applied N-methyl-d-aspartic acid (NMDA; glutamate receptor subtype agonist) were evaluated. Methods: P rats were assigned to alcohol naïve (water only) or alcohol drinking (continuous access to 15% alcohol and water for 8 consecutive weeks) groups. Responses of 23 putative dopamine neurons from naïve rats and 19 putative dopamine neurons from drinking rats were assessed in vivo using microiontophoretically applied NMDA. Current-response curves for firing frequency and burst activity were constructed using nonlinear mixed effects models. Between-group comparisons were made for EC(50) (effective current producing a half maximal excitatory response), E(max) (maximal excitatory effect), and C(DB) (the current at which depolarization block-marked decrease in neuronal activity-occurred). Results: Drinking P rats steadily consumed alcohol over the 8-week protocol and did not exhibit signs of dependence or withdrawal. Putative dopamine neurons from drinking rats exhibited resistance to depolarization block (higher C(DB) values) and required larger doses of NMDA to elicit moderate excitatory responses (higher EC(50) values), consistent with decreased receptor affinity. Maximal excitatory responses (E(max) ) did not differ between the groups, consistent with no change in receptor number. Blood alcohol was at undetectable levels at the time of experimentation. Conclusions: NMDA receptor sensitivity is decreased on posterior VTA putative dopamine neurons in P rats on a nondependent schedule of alcohol consumption. Mechanisms underlying increased spontaneous dopamine neuron activity may be independent of changes in NMDA receptor function. Decreased NMDA receptor sensitivity may precede the development of dependence.
  • Loading...
    Thumbnail Image
    Item
    N-Substituted-3-alkoxy-derivatives of dextromethorphan are functional NMDA receptor antagonists in vivo: Evidence from an NMDA-induced seizure model in rats
    (Elsevier, 2021) Witkin, Jeffrey M.; Cerne, Rok; Newman, Amy H.; Izenwasser, Sari; Smith, Jodi L.; Tortella, Frank C.; Neurological Surgery, School of Medicine
    Interest in developing NMDA receptor antagonists with reduced side-effects for neurological and psychiatric disorders has been re-energized by the recent introduction of esketamine into clinical practice for treatment-resistant depression. Structural analogs of dextromethorphan bind with low affinity to the NMDA receptor ion channel, have functional effects in vivo, and generally display a lower propensity for side-effects than that of ketamine and other higher affinity antagonists. As such, the aim of the present study was to determine whether a series of N-substituted-3-alkoxy-substituted dextromethorphan analogs produce their anticonvulsant effects through NMDA receptor blockade. Compounds were studied against NMDA-induced seizures in rats. Compounds were administered intracerebroventricularly in order to mitigate confounds of drug metabolism that arise from systemic administration. Comparison of the anticonvulsant potencies to their affinities for NMDA, σ1, and σ2 binding sites were made in order to evaluate the contribution of these receptors to anticonvulsant efficacy. The potencies to block convulsions were positively associated with their affinities to bind to the NMDA receptor ion channel ([3H]-TCP binding) (r = 0.71, p < 0.05) but not to σ1 receptors ([3H]-SKF 10047 binding) (r = -0.31, p = 0.46) or to σ2 receptors ([3H]-DTG binding) (p = -0.38, p = 0.36). This is the first report demonstrating that these dextromethorphan analogs are functional NMDA receptor antagonists in vivo. Given their potential therapeutic utility and favorable side-effect profiles, such low affinity NMDA receptor antagonists could be considered for further development in neurological (e.g., anticonvulsant) and psychiatric (e.g., antidepressant) disorders.
  • Loading...
    Thumbnail Image
    Item
    Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study
    (Frontiers Media SA, 2016) Zakharov, Denis; Lapish, Christopher; Gutkin, Boris; Kuznetsov, Alexey; Department of Psychology, School of Science
    Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University