ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "NASA-TLX"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Impact of document consolidation on healthcare providers’ perceived workload and information reconciliation tasks: a mixed methods study
    (Oxford University Press, 2019-02) Hosseini, Masoud; Faiola, Anthony; Jones, Josette; Vreeman, Daniel J.; Wu, Huanmei; Dixon, Brian E.; Medicine, School of Medicine
    Background Information reconciliation is a common yet complex and often time-consuming task performed by healthcare providers. While electronic health record systems can receive “outside information” about a patient in electronic documents, rarely does the computer automate reconciling information about a patient across all documents. Materials and Methods Using a mixed methods design, we evaluated an information system designed to reconcile information across multiple electronic documents containing health records for a patient received from a health information exchange (HIE) network. Nine healthcare providers participated in scenario-based sessions in which they manually consolidated information across multiple documents. Accuracy of consolidation was measured along with the time spent completing 3 different reconciliation scenarios with and without support from the information system. Participants also attended an interview about their experience. Perceived workload was evaluated quantitatively using the NASA-TLX tool. Qualitative analysis focused on providers’ impression of the system and the challenges faced when reconciling information in practice. Results While 5 providers made mistakes when trying to manually reconcile information across multiple documents, no participants made a mistake when the system supported their work. Overall perceived workload decreased significantly for scenarios supported by the system (37.2% in referrals, 18.4% in medications, and 31.5% in problems scenarios, P < 0.001). Information reconciliation time was reduced significantly when the system supported provider tasks (58.8% in referrals, 38.1% in medications, and 65.1% in problem scenarios). Conclusion Automating retrieval and reconciliation of information across multiple electronic documents shows promise for reducing healthcare providers’ task complexity and workload.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University