- Browse by Subject
Browsing by Subject "Myocytes, Cardiac"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Cardiac engraftment of genetically-selected parthenogenetic stem cell-derived cardiomyocytes(Public Library of Science, 2015) Yang, Tao; Rubart, Michael; Soonpaa, Mark H.; Didié, Michael; Christalla, Peter; Zimmermann, Wolfram-Hubertus; Field, Loren J.; Department of Pediatrics, IU School of MedicineParthenogenetic stem cells (PSCs) are a promising candidate donor for cell therapy applications. Similar to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), PSCs exhibit self-renewing capacity and clonogenic proliferation in vitro. PSCs exhibit largely haploidentical genotype, and as such may constitute an attractive population for allogenic applications. In this study, PSCs isolated from transgenic mice carrying a cardiomyocyte-restricted reporter transgene to permit tracking of donor cells were genetically modified to carry a cardiomyocyte-restricted aminoglycoside phosphotransferase expression cassette (MHC-neor/pGK-hygror) to permit the generation of highly enriched cardiomyocyte cultures from spontaneously differentiating PSCs by simple selection with the neomycin analogue G148. Following engraftment into isogenic recipient hearts, the selected cardiomyocytes formed a functional syncytium with the host myocardium as evidenced by the presence of entrained intracellular calcium transients. These cells thus constitute a potential source of therapeutic donor cells.Item Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis(SpringerNature, 2016-06-30) Han, Peidong; Bloomekatz, Joshua; Ren, Jie; Zhang, Ruilin; Grinstein, Jonathan D.; Zhao, Long; Burns, C. Geoffrey; Burns, Caroline E.; Anderson, Ryan M.; Chi, Neil C.; Department of Pediatrics, IU School of MedicineMany organs are composed of complex tissue walls that are structurally organized to optimize organ function. In particular, the ventricular myocardial wall of the heart comprises an outer compact layer that concentrically encircles the ridge-like inner trabecular layer. Although disruption in the morphogenesis of this myocardial wall can lead to various forms of congenital heart disease and non-compaction cardiomyopathies, it remains unclear how embryonic cardiomyocytes assemble to form ventricular wall layers of appropriate spatial dimensions and myocardial mass. Here we use advanced genetic and imaging tools in zebrafish to reveal an interplay between myocardial Notch and Erbb2 signalling that directs the spatial allocation of myocardial cells to their proper morphological positions in the ventricular wall. Although previous studies have shown that endocardial Notch signalling non-cell-autonomously promotes myocardial trabeculation through Erbb2 and bone morphogenetic protein (BMP) signalling, we discover that distinct ventricular cardiomyocyte clusters exhibit myocardial Notch activity that cell-autonomously inhibits Erbb2 signalling and prevents cardiomyocyte sprouting and trabeculation. Myocardial-specific Notch inactivation leads to ventricles of reduced size and increased wall thickness because of excessive trabeculae, whereas widespread myocardial Notch activity results in ventricles of increased size with a single-cell-thick wall but no trabeculae. Notably, this myocardial Notch signalling is activated non-cell-autonomously by neighbouring Erbb2-activated cardiomyocytes that sprout and form nascent trabeculae. Thus, these findings support an interactive cellular feedback process that guides the assembly of cardiomyocytes to morphologically create the ventricular myocardial wall and more broadly provide insight into the cellular dynamics of how diverse cell lineages organize to create form.Item Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart(European Society of Cardiology, 2018-03-01) Rubart, Michael; Tao, Wen; Lu, Xiao-Long; Conway, Simon J.; Reuter, Sean P.; Lin, Shien-Fong; Soonpaa, Mark H.; Medicine, School of MedicineAims: Recent studies have demonstrated electrotonic coupling between scar tissue and the surrounding myocardium in cryoinjured hearts. However, the electrical dynamics occurring at the myocyte-nonmyocyte interface in the fibrotic heart remain undefined. Here, we sought to develop an assay to interrogate the nonmyocyte cell type contributing to heterocellular coupling and to characterize, on a cellular scale, its voltage response in the infarct border zone of living hearts. Methods and results: We used two-photon laser scanning microscopy in conjunction with a voltage-sensitive dye to record transmembrane voltage changes simultaneously from cardiomyocytes and adjoined nonmyocytes in Langendorff-perfused mouse hearts with healing myocardial infarction. Transgenic mice with cardiomyocyte-restricted expression of a green fluorescent reporter protein underwent permanent coronary artery ligation and their hearts were subjected to voltage imaging 7-10 days later. Reporter-negative cells, i.e. nonmyocytes, in the infarct border zone exhibited depolarizing transients at a 1:1 coupling ratio with action potentials recorded simultaneously from adjacent, reporter-positive ventricular myocytes. The electrotonic responses in the nonmyocytes exhibited slower rates of de- and repolarization compared to the action potential waveform of juxtaposed myocytes. Voltage imaging in infarcted hearts expressing a fluorescent reporter specifically in myofibroblasts revealed that the latter were electrically coupled to border zone myocytes. Their voltage transient properties were indistinguishable from those of nonmyocytes in hearts with cardiomyocyte-restricted reporter expression. The density of connexin43 expression at myofibroblast-cardiomyocyte junctions was ∼5% of that in the intercalated disc regions of paired ventricular myocytes in the remote, uninjured myocardium, whereas the ratio of connexin45 to connexin43 expression levels at heterocellular contacts was ∼1%. Conclusion: Myofibroblasts contribute to the population of electrically coupled nonmyocytes in the infarct border zone. The slower kinetics of myofibroblast voltage responses may reflect low electrical conductivity across heterocellular junctions, in accordance with the paucity of connexin expression at myofibroblast-cardiomyocyte contacts.Item Intracellular Na+ overload causes oxidation of CaMKII and leads to Ca2+ mishandling in isolated ventricular myocytes(Elsevier, 2014-11) Viatchenko-Karpinski, Serge; Kornyeyev, Dmytro; El-Bizri, Nesrine; Budas, Grant; Fan, Peidong; Jiang, Zhan; Yang, Jin; Anderson, Mark E.; Shryock, John C.; Chang, Ching-Pin; Belardinelli, Luiz; Yao, Lina; Department of Medicine, IU School of MedicineAn increase of late Na(+) current (INaL) in cardiac myocytes can raise the cytosolic Na(+) concentration and is associated with activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and alterations of mitochondrial metabolism and Ca(2+) handling by sarcoplasmic reticulum (SR). We tested the hypothesis that augmentation of INaL can increase mitochondrial reactive oxygen species (ROS) production and oxidation of CaMKII, resulting in spontaneous SR Ca(2+) release and increased diastolic Ca(2+) in myocytes. Increases of INaL and/or of the cytosolic Na(+) concentration led to mitochondrial ROS production and oxidation of CaMKII to cause dysregulation of Ca(2+) handling in rabbit cardiac myocytes.Item Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction(Ovid Technologies Wolters Kluwer -American Heart Association, 2012-10) Xi, Yutao; Ai, Tomohiko; De Lange, Enno; Li, Zhaohui; Wu, Geru; Brunelli, Luca; Kyle, W. Buck; Turker, Isik; Cheng, Jie; Ackerman, Michael J.; Kimura, Akinori; Weiss, James N.; Qu, Zhilin; Kim, Jeffrey J.; Faulkner, Georgine; Vatta, Matteo; Department of Medicine, IU School of MedicineBACKGROUND: Defects of cytoarchitectural proteins can cause left ventricular noncompaction, which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LIM domain-binding protein 3-encoding Z-band alternatively spliced PDZ motif gene (ZASP) in a patient with left ventricular noncompaction and conduction disturbances. We sought to investigate the role of p.D117N mutation in the LBD3 NM_001080114.1 isoform (ZASP1-D117N) for the regulation of cardiac sodium channel (Na(v)1.5) that plays an important role in the cardiac conduction system. METHODS AND RESULTS: Effects of ZASP1-wild-type and ZASP1-D117N on Na(v)1.5 were studied in human embryonic kidney-293 cells and neonatal rat cardiomyocytes. Patch-clamp study demonstrated that ZASP1-D117N significantly attenuated I(Na) by 27% in human embryonic kidney-293 cells and by 32% in neonatal rat cardiomyocytes. In addition, ZASP1-D117N rightward shifted the voltage-dependent activation and inactivation in both systems. In silico simulation using Luo-Rudy phase 1 model demonstrated that altered Na(v)1.5 function can reduce cardiac conduction velocity by 28% compared with control. Pull-down assays showed that both wild-type and ZASP1-D117N can complex with Na(v)1.5 and telethonin/T-Cap, which required intact PDZ domains. Immunohistochemical staining in neonatal rat cardiomyocytes demonstrates that ZASP1-D117N did not significantly disturb the Z-line structure. Disruption of cytoskeletal networks with 5-iodonaphthalene-1-sulfonyl homopiperazine and cytochalasin D abolished the effects of ZASP1-D117N on Na(v)1.5. CONCLUSIONS: ZASP1 can form protein complex with telethonin/T-Cap and Na(v)1.5. The left ventricular noncompaction-specific ZASP1 mutation can cause loss of function of Na(v)1.5, without significant alteration of the cytoskeletal protein complex. Our study suggests that electric remodeling can occur in left ventricular noncompaction subject because of a direct effect of mutant ZASP on Na(v)1.5.Item Mechanisms to enhance cardiac regeneration(2004) Dowell, Joshua D.Item Transitions of protein traffic from cardiac ER to junctional SR(Elsevier, 2015-04) Sleiman, Naama H.; McFarland, Timothy P.; Jones, Larry R.; Cala, Steven E.; Department of Medicine, IU School of MedicineThe junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca(2+) release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQ-DsRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed ((del)TRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and (del)TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic.