ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Myocardial perfusion reserve"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Diastolic dysfunction in women with ischemia and no obstructive coronary artery disease: Mechanistic insight from magnetic resonance imaging
    (Elsevier, 2021) Samuel, T. Jake; Wei, Janet; Sharif, Behzad; Tamarappoo, Balaji K.; Pattisapu, Varun; Maughan, Jenna; Cipher, Daisha J.; Suppogu, Nissi; Aldiwani, Haider; Thomson, Louise E. J.; Shufelt, Chrisandra; Berman, Daniel S.; Li, Debiao; Bairey Merz, C. Noel; Nelson, Michael D.; Medicine, School of Medicine
    Background: Ischemia with no obstructive coronary artery disease (INOCA) is prevalent in women and is associated with increased risk of developing heart failure with preserved ejection fraction (HFpEF); however, the mechanism(s) contributing to this progression remains unclear. Given that diastolic dysfunction is common in women with INOCA, defining mechanisms related to diastolic dysfunction in INOCA could identify therapeutic targets to prevent HFpEF. Methods: Cardiac MRI was performed in 65 women with INOCA and 12 reference controls. Diastolic function was defined by left ventricular early diastolic circumferential strain rate (eCSRd). Contributors to diastolic dysfunction were chosen a priori as coronary vascular dysfunction (myocardial perfusion reserve index [MPRI]), diffuse myocardial fibrosis (extracellular volume [ECV]), and aortic stiffness (aortic pulse wave velocity [aPWV]). Results: Compared to controls, eCSRd was lower in INOCA (1.61 ± 0.33/s vs. 1.36 ± 0.31/s, P = 0.016); however, this difference was not exaggerated when the INOCA group was sub-divided by low and high MPRI (P > 0.05) nor was ECV elevated in INOCA (29.0 ± 1.9% vs. 28.0 ± 3.2%, control vs. INOCA; P = 0.38). However, aPWV was higher in INOCA vs. controls (8.1 ± 3.2 m/s vs. 6.1 ± 1.5 m/s; P = 0.045), and was associated with eCSRd (r = -0.50, P < 0.001). By multivariable linear regression analysis, aPWV was an independent predictor of decreased eCSRd (standardized β = -0.39, P = 0.003), as was having an elevated left ventricular mass index (standardized β = -0.25, P = 0.024) and lower ECV (standardized β = 0.30, P = 0.003). Conclusions: These data provide mechanistic insight into diastolic dysfunction in women with INOCA, identifying aortic stiffness and ventricular remodeling as putative therapeutic targets.
  • Loading...
    Thumbnail Image
    Item
    Myocardial Perfusion Reserve in Children with Friedreich Ataxia
    (Springer, 2021-12) Hutchens, Jeffrey A.; Johnson, Tiffanie R.; Payne, R. Mark; Medical and Molecular Genetics, School of Medicine
    Children with Friedreich's ataxia (FA) are at risk of perioperative morbidity and mortality from severe unpredictable heart failure. There is currently no clear way of identifying patients at highest risk. We used myocardial perfusion reserve (MPR), an MRI technique used to assess the maximal myocardial blood flow above baseline, to help determine potential surgical risk in FA subjects. In total, seven children with genetically confirmed FA, ages 8-17 years, underwent MPR stress testing using regadenoson. Six of the seven demonstrated impaired endocardial perfusion during coronary hyperemia. The same six were also found to have evidence of ongoing myocardial damage as illustrated by cardiac troponin I leak (range 0.04-0.17 ng/mL, normal < 0.03 ng/mL). None of the patients had a reduced ejection fraction (range 59-74%) or elevated insulin level (range 2.46-14.23 mCU/mL). This retrospective study shows that children with FA develop MPR defects early in the disease process. It also suggests MPR may be a sensitive tool to evaluate underlying cardiac compromise and could be of use in directing surgical management decisions in children with FA.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University