- Browse by Subject
Browsing by Subject "Myocardial fibrosis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cardiac Imaging and Biomarkers for Assessing Myocardial Fibrosis in Children with Hypertrophic Cardiomyopathy(Elsevier, 2023) Kirmani, Sonya; Woodard, Pamela K.; Shi, Ling; Hamza, Taye H.; Canter, Charles E.; Colan, Steven D.; Pahl, Elfriede; Towbin, Jeffrey A.; Webber, Steven A.; Rossano, Joseph W.; Everitt, Melanie D.; Molina, Kimberly M.; Kantor, Paul F.; Jefferies, John L.; Feingold, Brian; Addonizio, Linda J.; Ware, Stephanie M.; Chung, Wendy K.; Ballweg, Jean A.; Lee, Teresa M.; Bansal, Neha; Razoky, Hiedy; Czachor, Jason; Lunze, Fatima I.; Marcus, Edward; Commean, Paul; Wilkinson, James D.; Lipshultz, Steven E.; Pediatrics, School of MedicineBackground: Myocardial fibrosis, as diagnosed on cardiac magnetic resonance imaging (cMRI) by late gadolinium enhancement (LGE), is associated with adverse outcomes in adults with hypertrophic cardiomyopathy (HCM), but its prevalence and magnitude in children with HCM have not been established. We investigated: (1) the prevalence and extent of myocardial fibrosis as detected by LGE cMRI; (2) the agreement between echocardiographic and cMRI measurements of cardiac structure; and (3) whether serum concentrations of N-terminal pro hormone B-type natriuretic peptide (NT-proBNP) and cardiac troponin-T are associated with cMRI measurements. Methods: A cross-section of children with HCM from 9 tertiary-care pediatric heart centers in the U.S. and Canada were enrolled in this prospective NHLBI study of cardiac biomarkers in pediatric cardiomyopathy (ClinicalTrials.gov Identifier: NCT01873976). The median age of the 67 participants was 13.8 years (range 1-18 years). Core laboratories analyzed echocardiographic and cMRI measurements, and serum biomarker concentrations. Results: In 52 children with non-obstructive HCM undergoing cMRI, overall low levels of myocardial fibrosis with LGE >2% of left ventricular (LV) mass were detected in 37 (71%) (median %LGE, 9.0%; IQR: 6.0%, 13.0%; range, 0% to 57%). Echocardiographic and cMRI measurements of LV dimensions, LV mass, and interventricular septal thickness showed good agreement using the Bland-Altman method. NT-proBNP concentrations were strongly and positively associated with LV mass and interventricular septal thickness (P < .001), but not LGE. Conclusions: Low levels of myocardial fibrosis are common in pediatric patients with HCM seen at referral centers. Longitudinal studies of myocardial fibrosis and serum biomarkers are warranted to determine their predictive value for adverse outcomes in pediatric patients with HCM.Item Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement(Oxford University Press, 2021) Han, Donghee; Tamarappoo, Balaji; Klein, Eyal; Tyler, Jeffrey; Chakravarty, Tarun; Otaki, Yuka; Miller, Robert; Eisenberg, Evann; Park, Rebekah; Singh, Siddharth; Shiota, Takahiro; Siegel, Robert; Stegic, Jasminka; Salseth, Tracy; Cheng, Wen; Dey, Damini; Thomson, Louise; Berman, Daniel; Makkar, Raj; Friedman, John; Radiation Oncology, School of MedicineAims: Recovery of left ventricular ejection fraction (LVEF) after aortic valve replacement has prognostic importance in patients with aortic stenosis (AS). The mechanism by which myocardial fibrosis impacts LVEF recovery in AS is not well characterized. We sought to evaluate the predictive value of extracellular volume fraction (ECV) quantified by cardiac CT angiography (CTA) for LVEF recovery in patients with AS after transcatheter aortic valve replacement (TAVR). Methods and results: In 109 pre-TAVR patients with LVEF <50% at baseline echocardiography, CTA-derived ECV was calculated as the ratio of change in CT attenuation of the myocardium and the left ventricular (LV) blood pool before and after contrast administration. Early LVEF recovery was defined as an absolute increase of ≥10% in LVEF measured by post-TAVR follow-up echocardiography within 6 months of the procedure. Early LVEF recovery was observed in 39 (36%) patients. The absolute increase in LVEF was 17.6 ± 8.8% in the LVEF recovery group and 0.9 ± 5.9% in the no LVEF recovery group (P < 0.001). ECV was significantly lower in patients with LVEF recovery compared with those without LVEF recovery (29.4 ± 6.1% vs. 33.2 ± 7.7%, respectively, P = 0.009). In multivariable analysis, mean pressure gradient across the aortic valve [odds ratio (OR): 1.07, 95% confidence interval (CI): 1.03-1.11, P: 0.001], LV end-diastolic volume (OR: 0.99, 95% CI: 0.98-0.99, P: 0.035), and ECV (OR: 0.92, 95% CI: 0.86-0.99, P: 0.018) were independent predictors of early LVEF recovery. Conclusion: Increased myocardial ECV on CTA is associated with impaired LVEF recovery post-TAVR in severe AS patients with impaired LV systolic function.Item Molecular Phenotyping and Mechanisms of Myocardial Fibrosis in Advanced Chronic Kidney Disease(Wolters Kluwer, 2023) Narayanan, Gayatri; Halim, Arvin; Hu, Alvin; Avin, Keith G.; Lu, Tzongshi; Zehnder, Daniel; Hato, Takashi; Chen, Neal X.; Moe, Sharon M.; Lim, Kenneth; Medicine, School of MedicineKey Points: * Myocardial fibrosis in hearts from patients with CKD is characterized by increased trimeric tensile collagen type I and decreased elastic collagen type III compared with hearts from hypertensive or healthy donors, suggesting a unique fibrotic phenotype. * Myocardial fibrosis in CKD is driven by alterations in extracellular matrix proteostasis, including dysregulation of metalloproteinases and cross-linking enzymes. * CKD-associated mineral stressors uniquely induce a fibronectin-independent mechanism of fibrillogenesis characterized by formation of trimeric collagen compared with proinflammatory/fibrotic cytokines. Background: Myocardial fibrosis is a major life-limiting problem in CKD. Despite this, the molecular phenotype and metabolism of collagen fibrillogenesis in fibrotic hearts of patients with advanced CKD have been largely unstudied. Methods: We analyzed explanted human left ventricular (LV) heart tissues in a three-arm cross-sectional cohort study of deceased donor patients on hemodialysis (HD, n=18), hypertension with preserved renal function (HTN, n=8), and healthy controls (CON, n=17), ex vivo. RNA-seq and protein analysis was performed on human donor hearts and cardiac fibroblasts treated with mineral stressors (high phosphate and high calcium). Further mechanistic studies were performed using primary cardiac fibroblasts, in vitro treated with mineral stressors, proinflammatory and profibrotic cytokines. Results: Of the 43 donor participants, there was no difference in age (P > 0.2), sex (P > 0.8), or body mass index (P > 0.1) between the groups. Hearts from the HD group had extensive fibrosis (P < 0.01). All LV tissues expressed only the trimeric form of collagen type I. HD hearts expressed increased collagen type I (P < 0.03), elevated collagen type I:III ratio (P < 0.05), and decreased MMP1 (P < 0.05) and MMP2 (P < 0.05). RNA-seq revealed no significant differential gene expression of extracellular matrix proteins of interest in HD hearts, but there was significant upregulation of LH2, periostin, α-SMA, and TGF-β1 gene expression in mineral stressor–treated cardiac fibroblasts. Both mineral stressors (P < 0.009) and cytokines (P < 0.03) increased collagen type I:III ratio. Mineral stressors induced trimeric collagen type I, but cytokine treatment induced only dimeric collagen type I in cardiac fibroblasts. Mineral stressors downregulated fibronectin (P < 0.03) and MMP2 zymogen (P < 0.01) but did not significantly affect expression of periostin, MMP1, or cross-linking enzymes. TGF-β upregulated fibronectin (P < 0.01) and periostin (P < 0.02) only. Conclusions: Myocardial fibrosis in advanced CKD hearts is characterized by increased trimeric collagen type I and dysregulated collagen metabolism, and is differentially regulated by components of uremia.Item T‐wave and its association with myocardial fibrosis on cardiovascular magnetic resonance examination(Wiley, 2021-03) Zareba, Karolina M.; Truong, Vien T.; Mazur, Wojciech; Smart, Suzanne M.; Xia, Xiaojuan; Couderc, Jean-Philippe; Raman, Subha V.; Medicine, School of MedicineBackground: Risk stratification in non-ischemic myocardial disease poses a challenge. While cardiovascular magnetic resonance (CMR) is a comprehensive tool, the electrocardiogram (ECG) provides quick impactful clinical information. Studying the relationships between CMR and ECG can provide much-needed risk stratification. We evaluated the electrocardiographic signature of myocardial fibrosis defined as presence of late gadolinium enhancement (LGE) or extracellular volume fraction (ECV) ≥29%. Methods: We evaluated 240 consecutive patients (51% female, 47.1 ± 16.6 years) referred for a clinical CMR who underwent 12-lead ECGs within 90 days. ECG parameters studied to determine association with myocardial fibrosis included heart rate, QRS amplitude/duration, T-wave amplitude, corrected QT and QT peak, and Tpeak-Tend. Abnormal T-wave was defined as low T-wave amplitude ≤200 µV or a negative T wave, both in leads II and V5. Results: Of the 147 (61.3%) patients with myocardial fibrosis, 67 (28.2%) had ECV ≥ 29%, and 132 (54.6%) had non-ischemic LGE. An abnormal T-wave was more prevalent in patients with versus without myocardial fibrosis (66% versus 42%, p < .001). Multivariable analysis demonstrated that abnormal T-wave (OR 1.95, 95% CI 1.09-3.49, p = .03) was associated with myocardial fibrosis (ECV ≥ 29% or LGE) after adjustment for clinical covariates (age, gender, history of hypertension, and heart failure). Dynamic nomogram for predicting myocardial fibrosis using clinical parameters and the T-wave was developed: https://normogram.shinyapps.io/CMR_Fibrosis/. Conclusion: Low T-wave amplitude ≤ 200 µV or negative T-waves are independently associated with myocardial fibrosis. Prospective evaluation of T-wave amplitude may identify patients with a high probability of myocardial fibrosis and guide further indication for CMR.