- Browse by Subject
Browsing by Subject "Myeloma"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Age no Bar – a CIBMTR analysis of Elderly Patients undergoing Autologous Hematopoietic Cell Transplantation for Multiple Myeloma(Wiley, 2020) Munshi, Pashna N.; Vesole, David; Jurczyszyn, Artur; Zaucha, Jan Maciej; St. Martin, Andrew; Davila, Omar; Agrawal, Vaibhav; Badawy, Sherif M.; Battiwalla, Minoo; Chhabra, Saurabh; Copelan, Edward; Kharfan-Dabaja, Mohamed A.; Farhadfar, Nosha; Ganguly, Siddhartha; Hashmi, Shahrukh; Krem, Maxwell M.; Lazarus, Hillard M.; Malek, Ehsan; Meehan, Kenneth; Murthy, Hemant S.; Nishihori, Taiga; Olin, Rebecca L.; Olsson, Richard F.; Schriber, Jeffrey; Seo, Sachiko; Shah, Gunjan; Solh, Melhem; Tay, Jason; Kumar, Shaji; Qazilbash, Muzaffar H.; Shah, Nina; Hari, Parameswaran N.; D'Souza, Anita; Medicine, School of MedicineBackground: Upfront autologous hematopoietic stem cell transplantation (AHCT) remains an important therapy in the management of patients with multiple myeloma (MM), a disease of older adults. Methods: The authors investigated the outcomes of AHCT in patients with MM who were aged ≥70 years. The Center for International Blood and Marrow Transplant Research (CIBMTR) database registered 15,999 patients with MM in the United States within 12 months of diagnosis during 2013 through 2017; a total of 2092 patients were aged ≥70 years. Nonrecurrence mortality (NRM), disease recurrence and/or progression (relapse; REL), progression-free survival (PFS), and overall survival (OS) were modeled using Cox proportional hazards models with age at transplantation as the main effect. Because of the large sample size, a P value <.01 was considered to be statistically significant a priori. Results: An increase in AHCT was noted in 2017 (28%) compared with 2013 (15%) among patients aged ≥70 years. Although approximately 82% of patients received melphalan (Mel) at a dose of 200 mg/m2 overall, 58% of the patients aged ≥70 years received Mel at a dose of 140 mg/m2 . On multivariate analysis, patients aged ≥70 years demonstrated no difference with regard to NRM (hazard ratio [HR] 1.3; 99% confidence interval [99% CI], 1-1.7 [P = .06]), REL (HR, 1.03; 99% CI, 0.9-1.1 [P = 0.6]), PFS (HR, 1.06; 99% CI, 1-1.2 [P = 0.2]), and OS (HR, 1.2; 99% CI, 1-1.4 [P = .02]) compared with the reference group (those aged 60-69 years). In patients aged ≥70 years, Mel administered at a dose of 140 mg/m2 was found to be associated with worse outcomes compared with Mel administered at a dose of 200 mg/m2 , including day 100 NRM (1% [95% CI, 1%-2%] vs 0% [95% CI, 0%-1%]; P = .003]), 2-year PFS (64% [95% CI, 60%-67%] vs 69% [95% CI, 66%-73%]; P = .003), and 2-year OS (85% [95% CI, 82%-87%] vs 89% [95% CI, 86%-91%]; P = .01]), likely representing frailty. Conclusions: The results of the current study demonstrated that AHCT remains an effective consolidation therapy among patients with MM across all age groups.Item Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts(Impact Journals, 2019-04-12) Delgado-Calle, Jesus; Kurihara, Noriyoshi; Atkinson, Emily G.; Nelson, Jessica; Miyagawa, Kazuaki; Galmarini, Carlos Maria; Roodman, G. David; Bellido, Teresita; Medicine, School of MedicineDespite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction.Item Blocking the ZZ domain of sequestosome1/p62 suppresses myeloma growth and osteoclast formation in vitro and induces dramatic bone formation in myeloma-bearing bones in vivo(SpringerNature, 2016-02) Teramachi, Jumpei; Silbermann, Rebecca; Yang, Peng; Zhao, Wei; Mohammad, Khalid S.; Guo, Jianxia; Anderson, Judith L.; Zhou, Dan; Feng, Rentian; Myint, Kyaw-Zeyar; Maertz, Nathan; Beumer, Jan H.; Eiseman, Julie L.; Windle, Jolene J.; Xie, Xiang-Qun; Roodman, G. David; Kurihara, Noriyoshi; Department of Medicine, IU School of MedicineWe reported that p62 (sequestosome 1) serves as a signaling hub in bone marrow stromal cells (BMSCs) for the formation of signaling complexes, including NFκB, p38MAPK and JNK, that are involved in the increased osteoclastogenesis and multiple myeloma (MM) cell growth induced by BMSCs that are key contributors to multiple myeloma bone disease (MMBD), and demonstrated that the ZZ domain of p62 (p62-ZZ) is required for BMSC enhancement of MMBD. We recently identified a novel p62-ZZ inhibitor, XRK3F2, which inhibits MM cell growth and BMSC growth enhancement of human MM cells. In the current study, we evaluate the relative specificity of XRK3F2 for p62-ZZ, characterize XRK3F2's capacity to inhibit growth of primary MM cells and human MM cell lines, and test the in vivo effects of XRK3F2 in the immunocompetent 5TGM1 MM model. We found that XRK3F2 induces dramatic cortical bone formation that is restricted to MM containing bones and blocked the effects and upregulation of tumor necrosis factor alpha (TNFα), an osteoblast (OB) differentiation inhibitor that is increased in the MM bone marrow microenvironment and utilizes signaling complexes formed on p62-ZZ, in BMSC. Interestingly, XRK3F2 had no effect on non-MM bearing bone. These results demonstrate that targeting p62 in MM models has profound effects on MMBD.Item The Emerging Role of Osteocytes in Cancer in Bone(Wiley, 2019-02-27) Atkinson, Emily G.; Delgado‐Calle, Jesús; Anatomy and Cell Biology, School of MedicineAdvances in the last decade have established the osteocyte, the most abundant cell in bone, as a dynamic and multifunctional cell capable of controlling bone homeostasis by regulating the function of both osteoblasts and osteoclasts. In addition, accumulating evidence demonstrates that osteocyte function is altered in several skeletal disorders, and targeting osteocytes and their derived factors improves skeletal health. Despite the remarkable progress in our understanding of osteocyte biology, there has been a paucity of information regarding the role of osteocytes in the progression of cancer in bone. Exciting, recent discoveries suggest that tumor cells communicate with osteocytes to generate a microenvironment that supports the growth and survival of cancer cells and stimulates bone destruction. This review features these novel findings and discussions regarding the impact of chemotherapy on osteocyte function and the potential of targeting osteocytes for the treatment of cancer in bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.Item Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes(Springer, 2022-06-15) Bustoros, Mark; Anand, Shankara; Sklavenitis-Pistofidis, Romanos; Redd, Robert; Boyle, Eileen M.; Zhitomirsky, Benny; Dunford, Andrew J.; Tai, Yu-Tzu; Chavda, Selina J.; Boehner, Cody; Neuse, Carl Jannes; Rahmat, Mahshid; Dutta, Ankit; Casneuf, Tineke; Verona, Raluca; Kastritis, Efstathis; Trippa, Lorenzo; Stewart, Chip; Walker, Brian A.; Davies, Faith E.; Dimopoulos, Meletios-Athanasios; Bergsagel, P. Leif; Yong, Kwee; Morgan, Gareth J.; Aguet, François; Getz, Gad; Ghobrial, Irene M.; Medicine, School of MedicineSmoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM) with significant heterogeneity in disease progression. Existing clinical models of progression risk do not fully capture this heterogeneity. Here we integrate 42 genetic alterations from 214 SMM patients using unsupervised binary matrix factorization (BMF) clustering and identify six distinct genetic subtypes. These subtypes are differentially associated with established MM-related RNA signatures, oncogenic and immune transcriptional profiles, and evolving clinical biomarkers. Three genetic subtypes are associated with increased risk of progression to active MM in both the primary and validation cohorts, indicating they can be used to better predict high and low-risk patients within the currently used clinical risk stratification models.Item Myeloma bone disease: Pathophysiology and management.(Elsevier, 2013-06) Silbermann, Rebecca; Roodman, G. David; Department of Medicine, IU School of MedicineMultiple myeloma bone disease is marked by severe dysfunction of both bone formation and resorption and serves as a model for understanding the regulation of osteoblasts (OBL) and osteoclasts (OCL) in cancer. Myeloma bone lesions are purely osteolytic and are associated with severe and debilitating bone pain, pathologic fractures, hypercalcemia, and spinal cord compression, as well as increased mortality. Interactions within the bone marrow microenvironment in myeloma are responsible for the abnormal bone remodeling in myeloma bone disease. Myeloma cells drive bone destruction that increases tumor growth, directly stimulates the OCL formation, and induces cells in the marrow microenvironment to produce factors that drive OCL formation and suppress OBL formation. Factors produced by marrow stromal cells and OCL promote tumor growth through direct action on myeloma cells and by increasing angiogenesis. Current therapies targeting MMBD focus on preventing osteoclastic bone destruction; however regulators of OBL inhibition in MMBD have also been identified, and targeted agents with a potential anabolic effect in MMBD are under investigation. This review will discuss the mechanisms responsible for MMBD and therapeutic approaches currently in use and in development for the management of MMBD.Item Notch3 signaling between myeloma cells and osteocytes in the tumor niche promotes tumor growth and bone destruction(Elsevier, 2022) Sabol, Hayley M.; Amorim, Tânia; Ashby, Cody; Halladay, David; Anderson, Judith; Cregor, Meloney; Sweet, Megan; Nookaew, Intawat; Kurihara, Noriyoshi; Roodman, G. David; Bellido, Teresita; Delgado-Calle, Jesus; Medicine, School of MedicineIn multiple myeloma (MM), communication via Notch signaling in the tumor niche stimulates tumor progression and bone destruction. We previously showed that osteocytes activate Notch, increase Notch3 expression, and stimulate proliferation in MM cells. We show here that Notch3 inhibition in MM cells reduced MM proliferation, decreased Rankl expression, and abrogated the ability of MM cells to promote osteoclastogenesis. Further, Notch3 inhibition in MM cells partially prevented the Notch activation and increased proliferation induced by osteocytes, demonstrating that Notch3 mediates MM-osteocyte communication. Consistently, pro-proliferative and pro-osteoclastogenic pathways were upregulated in CD138+ cells from newly diagnosed MM patients with high vs. low NOTCH3 expression. These results show that NOTCH3 signaling in MM cells stimulates proliferation and increases their osteoclastogenic potential. In contrast, Notch2 inhibition did not alter MM cell proliferation or communication with osteocytes. Lastly, mice injected with Notch3 knock-down MM cells had a 50% decrease in tumor burden and a 50% reduction in osteolytic lesions than mice bearing control MM cells. Together, these findings identify Notch3 as a mediator of cell communication among MM cells and between MM cells and osteocytes in the MM tumor niche and warrant future studies to exploit Notch3 as a therapeutic target to treat MM.Item Osteocyte Vegf-a contributes to myeloma-associated angiogenesis and is regulated by Fgf23(Nature Publishing Group, 2020-10-14) Mulcrone, Patrick L.; Edwards, Shanique K. E.; Petrusca, Daniela N.; Haneline, Laura S.; Delgado-Calle, Jesús; Roodman, G. David; Medicine, School of MedicineMultiple Myeloma (MM) induces bone destruction, decreases bone formation, and increases marrow angiogenesis in patients. We reported that osteocytes (Ocys) directly interact with MM cells to increase tumor growth and expression of Ocy-derived factors that promote bone resorption and suppress bone formation. However, the contribution of Ocys to enhanced marrow vascularization in MM is unclear. Since the MM microenvironment is hypoxic, we assessed if hypoxia and/or interactions with MM cells increases pro-angiogenic signaling in Ocys. Hypoxia and/or co-culture with MM cells significantly increased Vegf-a expression in MLOA5-Ocys, and conditioned media (CM) from MLOA5s or MM-MLOA5 co-cultured in hypoxia, significantly increased endothelial tube length compared to normoxic CM. Further, Vegf-a knockdown in MLOA5s or primary Ocys co-cultured with MM cells or neutralizing Vegf-a in MM-Ocy co-culture CM completely blocked the increased endothelial activity. Importantly, Vegf-a-expressing Ocy numbers were significantly increased in MM-injected mouse bones, positively correlating with tumor vessel area. Finally, we demonstrate that direct contact with MM cells increases Ocy Fgf23, which enhanced Vegf-a expression in Ocys. Fgf23 deletion in Ocys blocked these changes. These results suggest hypoxia and MM cells induce a pro-angiogenic phenotype in Ocys via Fgf23 and Vegf-a signaling, which can promote MM-induced marrow vascularization.Item Sample average treatment effect on the treated (SATT) analysis using counterfactual explanation identifies BMT and SARS-CoV-2 vaccination as protective risk factors associated with COVID-19 severity and survival in patients with multiple myeloma(Springer Nature, 2023-12-07) Mitra, Amit Kumar; Mukherjee, Ujjal Kumar; Mazumder, Suman; Madhira, Vithal; Bergquist, Timothy; Shao, Yu Raymond; Liu, Feifan; Song, Qianqian; Su, Jing; Kumar, Shaji; Bates, Benjamin A.; Sharafeldin, Noha; Topaloglu, Umit; National COVID Cohort Collaborative Consortium; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthPatients with multiple myeloma (MM), an age-dependent neoplasm of antibody-producing plasma cells, have compromised immune systems and might be at increased risk for severe COVID-19 outcomes. This study characterizes risk factors associated with clinical indicators of COVID-19 severity and all-cause mortality in myeloma patients utilizing NCATS' National COVID Cohort Collaborative (N3C) database. The N3C consortium is a large, centralized data resource representing the largest multi-center cohort of COVID-19 cases and controls nationwide (>16 million total patients, and >6 million confirmed COVID-19+ cases to date). Our cohort included myeloma patients (both inpatients and outpatients) within the N3C consortium who have been diagnosed with COVID-19 based on positive PCR or antigen tests or ICD-10-CM diagnosis code. The outcomes of interest include all-cause mortality (including discharge to hospice) during the index encounter and clinical indicators of severity (i.e., hospitalization/emergency department/ED visit, use of mechanical ventilation, or extracorporeal membrane oxygenation (ECMO)). Finally, causal inference analysis was performed using the Coarsened Exact Matching (CEM) and Propensity Score Matching (PSM) methods. As of 05/16/2022, the N3C consortium included 1,061,748 cancer patients, out of which 26,064 were MM patients (8,588 were COVID-19 positive). The mean age at COVID-19 diagnosis was 65.89 years, 46.8% were females, and 20.2% were of black race. 4.47% of patients died within 30 days of COVID-19 hospitalization. Overall, the survival probability was 90.7% across the course of the study. Multivariate logistic regression analysis showed histories of pulmonary and renal disease, dexamethasone, proteasome inhibitor/PI, immunomodulatory/IMiD therapies, and severe Charlson Comorbidity Index/CCI were significantly associated with higher risks of severe COVID-19 outcomes. Protective associations were observed with blood-or-marrow transplant/BMT and COVID-19 vaccination. Further, multivariate Cox proportional hazard analysis showed that high and moderate CCI levels, International Staging System (ISS) moderate or severe stage, and PI therapy were associated with worse survival, while BMT and COVID-19 vaccination were associated with lower risk of death. Finally, matched sample average treatment effect on the treated (SATT) confirmed the causal effect of BMT and vaccination status as top protective factors associated with COVID-19 risk among US patients suffering from multiple myeloma. To the best of our knowledge, this is the largest nationwide study on myeloma patients with COVID-19.Item Targeting Notch Inhibitors to the Myeloma Bone Marrow Niche Decreases Tumor Growth and Bone Destruction without Gut Toxicity(American Association for Cancer Research, 2021) Sabol, Hayley M.; Ferrari, Adam J.; Adhikari, Manish; Amorim, Tânia; McAndrews, Kevin; Anderson, Judith; Vigolo, Michele; Lehal, Rajwinder; Cregor, Meloney; Khan, Sharmin; Cuevas, Pedro L.; Helms, Jill A.; Kurihara, Noriyoshi; Srinivasan, Venkat; Ebetino, Frank H.; Boeckman, Robert K., Jr.; Roodman, G. David; Bellido, Teresita; Delgado-Calle, Jesus; Medicine, School of MedicineSystemic inhibition of Notch with γ-secretase inhibitors (GSI) decreases multiple myeloma tumor growth, but the clinical use of GSI is limited due to its severe gastrointestinal toxicity. In this study, we generated a GSI Notch inhibitor specifically directed to the bone (BT-GSI). BT-GSI administration decreased Notch target gene expression in the bone marrow, but it did not alter Notch signaling in intestinal tissue or induce gut toxicity. In mice with established human or murine multiple myeloma, treatment with BT-GSI decreased tumor burden and prevented the progression of multiple myeloma-induced osteolytic disease by inhibiting bone resorption more effectively than unconjugated GSI at equimolar doses. These findings show that BT-GSI has dual anti-myeloma and anti-resorptive properties, supporting the therapeutic approach of bone-targeted Notch inhibition for the treatment of multiple myeloma and associated bone disease. SIGNIFICANCE: Development of a bone-targeted Notch inhibitor reduces multiple myeloma growth and mitigates cancer-induced bone destruction without inducing the gastrointestinal toxicity typically associated with inhibition of Notch.