- Browse by Subject
Browsing by Subject "Myeloid Differentiation Factor 88"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Leukotriene B4 enhances the generation of proinflammatory microRNAs to promote MyD88-dependent macrophage activation(The American Association of Immunologists, 2014-03-01) Wang, Zhuo; Filgueiras, Luciano; Wang, Suonjan; Serezani, Ana Paula Moreira; Peters-Golden, Marc; Jancar, Sonia; Serezani, C. Henrique; Department of Microbiology and Immunology, IU School of MedicineMicroRNAs are known to control TLR activation in phagocytes. We have shown that leukotriene (LT) B4 (LTB4) positively regulates macrophage MyD88 expression by decreasing suppressor of cytokine signaling-1 (SOCS-1) mRNA stability. In this study, we investigated the possibility that LTB4 control of MyD88 expression involves the generation of microRNAs. Our data show that LTB4, via its receptor B leukotriene receptor 1 (BLT1) and Gαi signaling, increased macrophage expression of inflammatory microRNAs, including miR-155, miR-146b, and miR-125b. LTB4-mediated miR-155 generation was attributable to activating protein-1 activation. Furthermore, macrophage transfection with antagomirs against miR-155 and miR-146b prevented both the LTB4-mediated decrease in SOCS-1 and increase in MyD88. Transfection with miR-155 and miR-146b mimics decreased SOCS-1 levels, increased MyD88 expression, and restored TLR4 responsiveness in both wild type and LT-deficient macrophages. To our knowledge, our data unveil a heretofore unrecognized role for the GPCR BLT1 in controlling expression of microRNAs that regulate MyD88-dependent activation of macrophages.Item Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis(American Association for the Advancement of Science, 2018-05-01) Sisti, Flavia; Wang, Soujuan; Brandt, Stephanie L.; Glosson-Byers, Nicole; Mayo, Lindsey; Son, Young min; Sturgeon, Sarah; Filgueiras, Luciano; Jancar, Sonia; Wong, Hector; Dela Cruz, Charles S.; Andrews, Nathaniel; Alves-Filho, Jose Carlos; Cunha, Fernando Q.; Serezani, C. Henrique; Microbiology and Immunology, School of MedicineSepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.Item PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis(The American Association of Immunologists, 2014-03-01) Ferreira, Ana Elisa; Sisti, Flavia; Sônego, Fabiane; Wang, Suojang; Filgueiras, Luciano; Brandt, Stephanie; Serezani, Ana Paula Moreira; Cunha, Fernando Q.; Alves-Filho, Jose Carlos; Serezani, Carlos Henrique; Department of Microbiology and Immunology, IU School of MedicinePolymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.