ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Muscle -- Skeletal"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Rationale and design of the Clinical and Histologic Analysis of Mesenchymal Stromal Cells in AmPutations (CHAMP) trial investigating the therapeutic mechanism of mesenchymal stromal cells in the treatment of critical limb ischemia
    (Elsevier, 2018-07) Wang, S. Keisin; Green, Linden A.; Drucker, Natalie A.; Motaganahalli, Raghu L.; Fajardo, Andres; Murphy, Michael P.; Surgery, School of Medicine
    OBJECTIVE: Currently, there are no accepted nonsurgical therapies that improve the delivery of blood-derived nutrients to patients with critical limb ischemia. Here, we describe the ongoing phase 1/2 Clinical and Histologic Analysis of Mesenchymal Stromal Cells in AmPutations (CHAMP) trial, which will provide crucial evidence of the safety profile of mesenchymal stromal cells (MSCs) and explore their therapeutic mechanisms in the setting of critical limb ischemia requiring below-knee amputation (BKA). METHODS: In the CHAMP and the parallel marrowCHAMP trials (hereafter grouped together as CHAMP), a total of 32 extremities with rest pain or tissue loss requiring BKA will be enrolled to receive intramuscular injections of allogeneic MSCs (CHAMP; n = 16) or autogenous concentrated bone marrow aspirate (marrowCHAMP; n = 16) along the distribution of the BKA myocutaneous flap and proximal tibialis anterior. After treatment, subjects are randomized to BKA at four time points after injection (days 3, 7, 14, and 21). At the time of amputation, skeletal muscle is collected at 2-cm increments from the tibialis injection site and used to determine proangiogenic cytokine description, MSC retention, quantification of proangiogenic hematopoietic progenitor cells, and histologic description. Clinical limb perfusion before and after treatment will be quantified using transcutaneous oximetry, toe-brachial index, ankle-brachial index, and indocyanine angiography. Additional clinical end points include all-cause mortality, need for amputation revision, and gangrene incidence during the 6-month post-treatment follow-up. RESULTS: Enrollment is under way, with 10 patients treated per protocol thus far. We anticipate full conclusion of follow-up within the next 24 months. CONCLUSIONS: CHAMP will be pivotal in characterizing the safety, efficacy, and, most important, therapeutic mechanism of allogeneic MSCs and autogenous concentrated bone marrow aspirate in ischemic skeletal muscle.
  • Loading...
    Thumbnail Image
    Item
    Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease
    (Oxford University Press, 2010-02-15) Douillard-Guilloux, Gaelle; Raben, Nina; Takikita, Shoichi; Ferry, Arnaud; Vignaud, Alban; Guillet-Deniau, Isabelle; Favier, Maryline; Thurberg, Beth L.; Roach, Peter J.; Caillaud, Catherine; Richard, Emmanuel; Biochemistry and Molecular Biology, School of Medicine
    Glycogen storage disease type II (GSDII) or Pompe disease is an autosomal recessive disorder caused by acid alpha-glucosidase (GAA) deficiency, leading to lysosomal glycogen accumulation. Affected individuals store glycogen mainly in cardiac and skeletal muscle tissues resulting in fatal hypertrophic cardiomyopathy and respiratory failure in the most severe infantile form. Enzyme replacement therapy has already proved some efficacy, but results remain variable especially in skeletal muscle. Substrate reduction therapy was successfully used to improve the phenotype in several lysosomal storage disorders. We have recently demonstrated that shRNA-mediated reduction of glycogen synthesis led to a significant reduction of glycogen accumulation in skeletal muscle of GSDII mice. In this paper, we analyzed the effect of a complete genetic elimination of glycogen synthesis in the same GSDII model. GAA and glycogen synthase 1 (GYS1) KO mice were inter-crossed to generate a new double-KO model. GAA/GYS1-KO mice exhibited a profound reduction of the amount of glycogen in the heart and skeletal muscles, a significant decrease in lysosomal swelling and autophagic build-up as well as a complete correction of cardiomegaly. In addition, the abnormalities in glucose metabolism and insulin tolerance observed in the GSDII model were corrected in double-KO mice. Muscle atrophy observed in 11-month-old GSDII mice was less pronounced in GAA/GYS1-KO mice, resulting in improved exercise capacity. These data demonstrate that long-term elimination of muscle glycogen synthesis leads to a significant improvement of structural, metabolic and functional defects in GSDII mice and offers a new perspective for the treatment of Pompe disease.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University