- Browse by Subject
Browsing by Subject "Multimodal data integration"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multimodal data integration via mediation analysis with high-dimensional exposures and mediators(Wiley, 2022) Zhao, Yi; Li, Lexin; Alzheimer's Disease Neuroimaging Initiative; Biostatistics and Health Data Science, School of MedicineMotivated by an imaging proteomics study for Alzheimer's disease (AD), in this article, we propose a mediation analysis approach with high-dimensional exposures and high-dimensional mediators to integrate data collected from multiple platforms. The proposed method combines principal component analysis with penalized least squares estimation for a set of linear structural equation models. The former reduces the dimensionality and produces uncorrelated linear combinations of the exposure variables, whereas the latter achieves simultaneous path selection and effect estimation while allowing the mediators to be correlated. Applying the method to the AD data identifies numerous interesting protein peptides, brain regions, and protein-structure-memory paths, which are in accordance with and also supplement existing findings of AD research. Additional simulations further demonstrate the effective empirical performance of the method.Item Multimodal neuroimaging data integration and pathway analysis(Wiley, 2021) Zhao, Yi; Li, Lexin; Caffo, Brian S.; Biostatistics, School of Public HealthWith advancements in technology, the collection of multiple types of measurements on a common set of subjects is becoming routine in science. Some notable examples include multimodal neuroimaging studies for the simultaneous investigation of brain structure and function and multi-omics studies for combining genetic and genomic information. Integrative analysis of multimodal data allows scientists to interrogate new mechanistic questions. However, the data collection and generation of integrative hypotheses is outpacing available methodology for joint analysis of multimodal measurements. In this article, we study high-dimensional multimodal data integration in the context of mediation analysis. We aim to understand the roles that different data modalities play as possible mediators in the pathway between an exposure variable and an outcome. We propose a mediation model framework with two data types serving as separate sets of mediators and develop a penalized optimization approach for parameter estimation. We study both the theoretical properties of the estimator through an asymptotic analysis and its finite-sample performance through simulations. We illustrate our method with a multimodal brain pathway analysis having both structural and functional connectivity as mediators in the association between sex and language processing.