- Browse by Subject
Browsing by Subject "Mouse"
Now showing 1 - 10 of 31
Results Per Page
Sort Options
Item Activation of extrasynaptic δ-GABAA receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion(Elsevier, 2017-09) Melón, Laverne C.; Nolan, Zachary T.; Colar, Delphine; Moore, Eileen M.; Boehm II, Stephen L.; Psychology, School of ScienceRecent reports support higher than expected rates of binge alcohol consumption among women and girls. Unfortunately, few studies have assessed the mechanisms underlying this pattern of intake in females. Studies in males suggest that alcohol concentrations relevant to the beginning stages of binge intoxication may selectively target tonic GABAergic inhibition mediated by GABAA receptor subtypes expressing the δ-subunit protein (δ-GABAARs). Indeed, administration of agonists that interact with these δ-GABAARs prior to alcohol access can abolish binge drinking behavior in male mice. These δ-GABAARs have also been shown to exhibit estrous-dependent plasticity in regions relevant to drug taking behavior, like the hippocampus and periaqueductal gray. The present experiments were designed to determine whether the estrous cycle would alter binge drinking, or our ability to modulate this pattern of alcohol use with THIP, an agonist with high selectivity and efficacy at δ-GABAARs. Using the Drinking-in-the-Dark (DID) binge-drinking model, regularly cycling female mice were given 2h of daily access to alcohol (20%v/v). Vaginal cytology or vaginal impedance was assessed after drinking sessions to track estrous status. There was no fluctuation in binge drinking associated with the estrous cycle. Both Intra-posterior-VTA administration of THIP and systemic administration of the drug was also associated with an estrous cycle dependent reduction in drinking behavior. Pre-treatment with finasteride to inhibit synthesis of 5α-reduced neurosteroids did not disrupt THIP's effects. Analysis of δ-subunit mRNA from posterior-VTA enriched tissue samples revealed that expression of this GABAA receptor subunit is elevated during diestrus in this region. Taken together, these studies demonstrate that δGABAARs in the VTA are an important target for binge drinking in females and confirm that the estrous cycle is an important moderator of the pharmacology of this GABAA receptor subtype.Item Adenosinergic regulation of binge-like ethanol drinking and associated locomotor effects in male C57BL/6J mice(Elsevier, 2015-08) Fritz, Brandon M.; Boehm II, Stephen L.; Department of Psychology, School of ScienceWe recently observed that the addition of caffeine (a nonselective adenosine receptor antagonist) to a 20% ethanol solution significantly altered the intoxication profile of male C57BL/6J (B6) mice induced by voluntary binge-like consumption in the 'Drinking-in-the-Dark' (DID) paradigm. In the current study, the roles of A1 and A2A adenosine receptor subtypes, specifically, in binge-like ethanol consumption and associated locomotor effects were explored. Adult male B6 mice (PND 60-70) were allowed to consume 20% ethanol (v/v) or 2% sucrose (w/v) for 6days via DID. On day 7, mice received a systemic administration (i.p.) of the A1 antagonist DPCPX (1, 3, 6mg/kg), the A2A antagonist MSX-3 (1, 2, 4mg/kg), or vehicle immediately prior to fluid access in DID. Antagonism of the A1 receptor via DPCPX was found to dose-dependently decrease binge-like ethanol intake and associated blood ethanol concentrations (p's<0.05), although no effect was observed on sucrose intake. Antagonism of A2A had no effect on ethanol or sucrose consumption, however, MSX-3 elicited robust locomotor stimulation in mice consuming either solution (p's<0.05). Together, these findings suggest unique roles for the A1 and A2A adenosine receptor subtypes in binge-like ethanol intake and its associated locomotor effects.Item Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia(Wiley, 2014-03) Ahlfeld, Shawn K.; Conway, Simon J.; Department of Medicine, IU School of MedicineBronchopulmonary dysplasia (BPD) is a chronic lung disease of extreme prematurity and is defined clinically by dependence on supplemental oxygen due to impaired gas exchange. Optimal gas exchange is dependent on the development of a sufficient surface area for diffusion. In the mammalian lung, rapid acquisition of distal lung surface area is accomplished in neonatal and early adult life by means of vascularization and secondary septation of distal lung airspaces. Extreme preterm birth interrupts secondary septation and pulmonary capillary development and ultimately reduces the efficiency of the alveolar-capillary membrane. Although pulmonary health in BPD infants rapidly improves over the first few years, persistent alveolar-capillary membrane dysfunction continues into adolescence and adulthood. Preventative therapies have been largely ineffective, and therapies aimed at promoting normal development of the air-blood barrier in infants with established BPD remain largely unexplored. The purpose of this review will be: (1) to summarize the histological evidence of aberrant alveolar-capillary membrane development associated with extreme preterm birth and BPD, (2) to review the clinical evidence assessing the long-term impact of BPD on alveolar-capillary membrane function, and (3) to discuss the need to develop and incorporate direct measurements of functional gas exchange into clinically relevant animal models of inhibited alveolar development.Item Clinical significance of monocyte heterogeneity(SpringerOpen, 2015-02-14) Stansfield, Brian K.; Ingram, David A.; Department of Medicine, IU School of MedicineMonocytes are primitive hematopoietic cells that primarily arise from the bone marrow, circulate in the peripheral blood and give rise to differentiated macrophages. Over the past two decades, considerable attention to monocyte diversity and macrophage polarization has provided contextual clues into the role of myelomonocytic derivatives in human disease. Until recently, human monocytes were subdivided based on expression of the surface marker CD16. "Classical" monocytes express surface markers denoted as CD14(++)CD16(-) and account for greater than 70% of total monocyte count, while "non-classical" monocytes express the CD16 antigen with low CD14 expression (CD14(+)CD16(++)). However, recognition of an intermediate population identified as CD14(++)CD16(+) supports the new paradigm that monocytes are a true heterogeneous population and careful identification of specific subpopulations is necessary for understanding monocyte function in human disease. Comparative studies of monocytes in mice have yielded more dichotomous results based on expression of the Ly6C antigen. In this review, we will discuss the use of monocyte subpopulations as biomarkers of human disease and summarize correlative studies in mice that may yield significant insight into the contribution of each subset to disease pathogenesis.Item A Comprehensive Review of Mouse Diaphyseal Femur Fracture Models(Elsevier, 2020-07) Gunderson, Zachary J.; Campbell, Zachery R.; McKinley, Todd O.; Natoli, Roman M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineComplications related to treatment of long bone fractures still stand as a major challenge for orthopaedic surgeons. Elucidation of the mechanisms of bone healing and development, and the subsequent alteration of these mechanisms to improve outcomes, typically requires animal models as an intermediary between in vitro and human clinical studies. Murine models are some of the most commonly used in translational research, and mouse fracture models are particularly diverse, offering a wide variety of customization with distinct benefits and limitations depending on the study. This review critically examines three common femur fracture models in the mouse, namely cortical hole, 3-point fracture (Einhorn), and segmental bone defect. We lay out the general procedure for execution of each model, evaluate the practical implications and important advantages/disadvantages of each and describe recent innovations. Furthermore, we explore the applications that each model is best adapted for in the context of the current state of murine orthopaedic research.Item Defective Hand1 phosphoregulation uncovers essential roles for Hand1 in limb morphogenesis(The Company of Biologists Ltd, 2017-07-01) Firulli, Beth A.; Milliar, Hannah; Toolan, Kevin P.; Harkin, Jade; Fuchs, Robyn K.; Robling, Alex G.; Firulli, Anthony B.; Anatomy and Cell Biology, School of MedicineThe morphogenesis of the vertebrate limbs is a complex process in which cell signaling and transcriptional regulation coordinate diverse structural adaptations in diverse species. In this study, we examine the consequences of altering Hand1 dimer choice regulation within developing vertebrate limbs. Although Hand1 deletion via the limb-specific Prrx1-Cre reveals a non-essential role for Hand1 in mouse limb morphogenesis, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, results in a severe truncation of proximal-anterior limb elements. Molecular analysis reveals a non-cell-autonomous mechanism that causes widespread cell death within the embryonic limb bud. In addition, we observe changes in proximal-anterior gene regulation, including a reduction in the expression of Irx3, Irx5, Gli3 and Alx4, all of which are upregulated in Hand2 limb conditional knockouts. A reduction of Hand2 and Shh gene dosage improves the integrity of anterior limb structures, validating the importance of the Twist-family bHLH dimer pool in limb morphogenesis., Summary: Altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, results in a severe truncation of anterior-proximal limb elements in mice.Item Deoxyhypusine synthase promotes differentiation and proliferation of T helper type 1 (Th1) cells in autoimmune diabetes(ASBMB, 2013-12-20) Colvin, Stephanie C.; Maier, Bernhard; Morris, David L.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Department of Pediatrics, IU School of MedicineIn type 1 diabetes, cytokines arising from immune cells cause islet β cell dysfunction even before overt hyperglycemia. Deoxyhypusine synthase catalyzes the crucial hypusine modification of the factor eIF5A, which promotes the translation of a subset of mRNAs involved in cytokine responses. Here, we tested the hypothesis that deoxyhypusine synthase and, secondarily, hypusinated eIF5A contribute to the pathogenesis of type 1 diabetes using the non-obese diabetic (NOD) mouse model. Pre-diabetic NOD mice that received injections of the deoxyhypusine inhibitor N1-guanyl-1,7-diaminoheptane (GC7) demonstrated significantly improved glucose tolerance, more robust insulin secretion, and reduced insulitis compared with control animals. Analysis of tissues from treated mice revealed selective reductions in diabetogenic T helper type 1 (Th1) cells in the pancreatic lymph nodes, a primary site of antigen presentation. Isolated mouse CD90.2(+) splenocytes stimulated in vitro with anti-CD3/anti-CD28 and IL-2 to mimic autoimmune T cell activation exhibited proliferation and differentiation of CD4(+) T cell subsets (Th1, Th17, and Treg), but those treated with the deoxyhypusine synthase inhibitor GC7 showed a dose-dependent block in T cell proliferation with selective reduction in Th1 cells, similar to that observed in NOD mice. Inhibition of deoxyhypusine synthase blocked post-transcriptional expression of CD25, the high affinity IL-2 receptor α chain. Our results suggest a previously unrecognized role for deoxyhypusine synthase in promoting T cell proliferation and differentiation via regulation of CD25. Inhibition of deoxyhypusine synthase may provide a strategy for reducing diabetogenic Th1 cells and preserving β cell function in type 1 diabetes.Item Determinants shaping the nanoscale architecture of the mouse rod outer segment(eLife Sciences, 2021-12-21) Pöge, Matthias; Mahamid, Julia; Imanishi, Sanae S.; Plitzko, Jürgen M.; Palczewski, Krzysztof; Baumeister, Wolfgang; Ophthalmology, School of MedicineThe unique membrane organization of the rod outer segment (ROS), the specialized sensory cilium of rod photoreceptor cells, provides the foundation for phototransduction, the initial step in vision. ROS architecture is characterized by a stack of identically shaped and tightly packed membrane disks loaded with the visual receptor rhodopsin. A wide range of genetic aberrations have been reported to compromise ROS ultrastructure, impairing photoreceptor viability and function. Yet, the structural basis giving rise to the remarkably precise arrangement of ROS membrane stacks and the molecular mechanisms underlying genetically inherited diseases remain elusive. Here, cryo-electron tomography (cryo-ET) performed on native ROS at molecular resolution provides insights into key structural determinants of ROS membrane architecture. Our data confirm the existence of two previously observed molecular connectors/spacers which likely contribute to the nanometer-scale precise stacking of the ROS disks. We further provide evidence that the extreme radius of curvature at the disk rims is enforced by a continuous supramolecular assembly composed of peripherin-2 (PRPH2) and rod outer segment membrane protein 1 (ROM1) oligomers. We suggest that together these molecular assemblies constitute the structural basis of the highly specialized ROS functional architecture. Our Cryo-ET data provide novel quantitative and structural information on the molecular architecture in ROS and substantiate previous results on proposed mechanisms underlying pathologies of certain PRPH2 mutations leading to blindness.Item Differential resting-state patterns across networks are spatially associated with Comt and Trmt2a gene expression patterns in a mouse model of 22q11.2 deletion(Elsevier, 2021) Gass, Natalia; Peterson, Zeru; Reinwald, Jonathan; Sartorius, Alexander; Weber-Fahr, Wolfgang; Sack, Markus; Chen, Junfang; Cao, Han; Didriksen, Michael; Stensbøl, Tine Bryan; Klemme, Gabriele; Schwarz, Adam J.; Schwarz, Emanuel; Meyer-Lindenberg, Andreas; Nickl-Jockschat, Thomas; Radiology and Imaging Sciences, School of MedicineCopy number variations (CNV) involving multiple genes are ideal models to study polygenic neuropsychiatric disorders. Since 22q11.2 deletion is regarded as the most important single genetic risk factor for developing schizophrenia, characterizing the effects of this CNV on neural networks offers a unique avenue towards delineating polygenic interactions conferring risk for the disorder. We used a Df(h22q11)/+ mouse model of human 22q11.2 deletion to dissect gene expression patterns that would spatially overlap with differential resting-state functional connectivity (FC) patterns in this model (N = 12 Df(h22q11)/+ mice, N = 10 littermate controls). To confirm the translational relevance of our findings, we analyzed tissue samples from schizophrenia patients and healthy controls using machine learning to explore whether identified genes were co-expressed in humans. Additionally, we employed the STRING protein-protein interaction database to identify potential interactions between genes spatially associated with hypo- or hyper-FC. We found significant associations between differential resting-state connectivity and spatial gene expression patterns for both hypo- and hyper-FC. Two genes, Comt and Trmt2a, were consistently over-expressed across all networks. An analysis of human datasets pointed to a disrupted co-expression of these two genes in the brain in schizophrenia patients, but not in healthy controls. Our findings suggest that COMT and TRMT2A form a core genetic component implicated in differential resting-state connectivity patterns in the 22q11.2 deletion. A disruption of their co-expression in schizophrenia patients points out a prospective cause for the aberrance of brain networks communication in 22q11.2 deletion syndrome on a molecular level.Item GATA3 is essential for separating patterning domains during facial morphogenesis(The Company of Biologists, 2021) Abe, Makoto; Cox, Timothy C.; Firulli, Anthony B.; Kanai, Stanley M.; Dahlka, Jacob; Lim, Kim-Chew; Engel, James Douglas; Clouthier, David E.; Pediatrics, School of MedicineNeural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the ‘hinge and caps’ model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.