- Browse by Subject
Browsing by Subject "Mosquito control"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Advances in oral RNAi for disease vector mosquito research and control(Elsevier, 2020) Wiltshire, Rachel M.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineMosquito vectors in the genera Anopheles, Aedes, and Culex transmit a variety of medically important pathogens. Current vector control tools are reaching the limits of their effectiveness, necessitating the introduction of innovative vector control technologies. RNAi, which facilitates functional characterization of mosquito genes in the laboratory, could one day be applied as a new method of vector control. Recent advances in the oral administration of microbial-based systems for delivery of species-specific interfering RNA pesticides to mosquitoes may facilitate translation of this technology to the field. Oral RNAi-based pesticides represent a new class of biorational pesticides that could combat increased global incidence of insecticide resistance and which could one day become critical components of integrated human disease vector mosquito control programs.Item Assessment of Trinidad community stakeholder perspectives on the use of yeast interfering RNA-baited ovitraps for biorational control of Aedes mosquitoes(PLOS, 2021-06-29) Winter, Nikhella; Stewart, Akilah T.M.; Igiede, Jessica; Wiltshire, Rachel M.; Hapairai, Limb K.; James, Lester D.; Mohammed, Azad; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineDengue, Zika, chikungunya and yellow fever viruses continue to be a major public health burden. Aedes mosquitoes, the primary vectors responsible for transmitting these viral pathogens, continue to flourish due to local challenges in vector control management. Yeast interfering RNA-baited larval lethal ovitraps are being developed as a novel biorational control tool for Aedes mosquitoes. This intervention circumvents increasing issues with insecticide resistance and poses no known threat to non-target organisms. In an effort to create public awareness of this alternative vector control strategy, gain stakeholder feedback regarding product design and acceptance of the new intervention, and build capacity for its potential integration into existing mosquito control programs, this investigation pursued community stakeholder engagement activities, which were undertaken in Trinidad and Tobago. Three forms of assessment, including paper surveys, community forums, and household interviews, were used with the goal of evaluating local community stakeholders' knowledge of mosquitoes, vector control practices, and perceptions of the new technology. These activities facilitated evaluation of the hypothesis that the ovitraps would be broadly accepted by community stakeholders as a means of biorational control for Aedes mosquitoes. A comparison of the types of stakeholder input communicated through use of the three assessment tools highlighted the utility and merit of using each tool for assessing new global health interventions. Most study participants reported a general willingness to purchase an ovitrap on condition that it would be affordable and safe for human health and the environment. Stakeholders provided valuable input on product design, distribution, and operation. A need for educational campaigns that provide a mechanism for educating stakeholders about vector ecology and management was highlighted. The results of the investigation, which are likely applicable to many other Caribbean nations and other countries with heavy arboviral disease burdens, were supportive of supplementation of existing vector control strategies through the use of the yeast RNAi-based ovitraps.Item Demonstration of RNAi Yeast Insecticide Activity in Semi-Field Larvicide and Attractive Targeted Sugar Bait Trials Conducted on Aedes and Culex Mosquitoes(MDPI, 2023-12-15) Stewart, Akilah T. M.; Mysore, Keshava; Njoroge, Teresia M.; Winter, Nikhella; Shui Feng, Rachel; Singh, Satish; James, Lester D.; Singkhaimuk, Preeraya; Sun, Longhua; Mohammed, Azad; Oxley, James D.; Duckham, Craig; Ponlawat, Alongkot; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineEco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.Item GIS-Enhanced Survey of Potential Aedes aegypti and Aedes albopictus Artificial Oviposition Containers Distributed across Communities in Trinidad, West Indies(MDPI, 2024-10-08) Hapairai, Limb K.; Seeramsingh, Roshan; James, Lester D.; Feng, Rachel S.; Nandram, Naresh; Mohammed, Azad; Duman-Scheel, Molly; Severson, David W.; Medical and Molecular Genetics, School of MedicineDengue and other arboviruses remain a global threat, and enhanced efforts to control the mosquitoes that transmit them are urgently needed. A survey of potential manmade Aedes aegypti (L.) and Aedes albopictus (Skuse) oviposition containers was performed in four communities near the end of the typical dry season in 2018 in Trinidad, West Indies. The purpose was to conduct individual premise surveys and use GIS mapping to visualize premises within communities that had Aedes-positive containers, as this information could be used for the prioritization of mosquito control efforts in potential high risk areas as the wet season progressed. Accessible premises were surveyed following standard inspection protocols used by the Insect Vector Control Division (IVCD), Ministry of Health (MOH). The results indicated that two of the four locations would be at high risk for arbovirus transmission going into the wet season. The GIS mapping of premises with Aedes-positive containers facilitated the identification of potential hot spots for arbovirus transmission risk within communities that should be prioritized for enhanced monitoring and vector control efforts, emphasizing the need to increase community participation in standard surveys by IVCD.Item Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management(MDPI, 2023-06-28) Njoroge, Teresia Muthoni; Hamid-Adiamoh, Majidah; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineDue to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.