ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Monte Carlo simulation"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    LEAP: highly accurate prediction of protein loop conformations by integrating coarse-grained sampling and optimized energy scores with all-atom refinement of backbone and side chains
    (Wiley, 2014-02) Liang, Shide; Zhang, Chi; Zhou, Yaoqi; Department of Medicine, IU School of Medicine
    Prediction of protein loop conformations without any prior knowledge (ab initio prediction) is an unsolved problem. Its solution will significantly impact protein homology and template-based modeling as well as ab initio protein-structure prediction. Here, we developed a coarse-grained, optimized scoring function for initial sampling and ranking of loop decoys. The resulting decoys are then further optimized in backbone and side-chain conformations and ranked by all-atom energy scoring functions. The final integrated technique called loop prediction by energy-assisted protocol achieved a median value of 2.1 Å root mean square deviation (RMSD) for 325 12-residue test loops and 2.0 Å RMSD for 45 12-residue loops from critical assessment of structure-prediction techniques (CASP) 10 target proteins with native core structures (backbone and side chains). If all side-chain conformations in protein cores were predicted in the absence of the target loop, loop-prediction accuracy only reduces slightly (0.2 Å difference in RMSD for 12-residue loops in the CASP target proteins). The accuracy obtained is about 1 Å RMSD or more improvement over other methods we tested. The executable file for a Linux system is freely available for academic users at http://sparks-lab.org.
  • Loading...
    Thumbnail Image
    Item
    System Reliability Analysis With Autocorrelated Kriging Predictions
    (ASME, 2020-10) Wu, Hao; Zhu, Zhifu; Du, Xiaoping; Mechanical and Energy Engineering, School of Engineering and Technology
    When limit-state functions are highly nonlinear, traditional reliability methods, such as the first-order and second-order reliability methods, are not accurate. Monte Carlo simulation (MCS), on the other hand, is accurate if a sufficient sample size is used but is computationally intensive. This research proposes a new system reliability method that combines MCS and the Kriging method with improved accuracy and efficiency. Accurate surrogate models are created for limit-state functions with minimal variance in the estimate of the system reliability, thereby producing high accuracy for the system reliability prediction. Instead of employing global optimization, this method uses MCS samples from which training points for the surrogate models are selected. By considering the autocorrelation of a surrogate model, this method captures the more accurate contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated by four examples.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University