- Browse by Subject
Browsing by Subject "Monte Carlo Method"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Doppler fluctuation spectroscopy of intracellular dynamics in living tissue(Optical Society of America, 2019-04-01) Li, Zhe; Sun, Hao; Turek, John; Jalal, Shadia; Childress, Michael; Nolte, David D.; Medicine, School of MedicineIntracellular dynamics in living tissue are dominated by active transport driven by bioenergetic processes far from thermal equilibrium. Intracellular constituents typically execute persistent walks. In the limit of long mean free paths, the persistent walks are ballistic, exhibiting a "Doppler edge" in light scattering fluctuation spectra. At shorter transport lengths, the fluctuations are described by lifetime-broadened Doppler spectra. Dynamic light scattering from transport in the ballistic, diffusive, or the crossover regimes is derived analytically, including the derivation of autocorrelation functions through a driven damped harmonic oscillator analog for light scattering from persistent walks. The theory is validated through Monte Carlo simulations. Experimental evidence for the Doppler edge in three-dimensional (3D) living tissue is obtained using biodynamic imaging based on low-coherence interferometry and digital holography.Item Initial Steps Towards a Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons at FLASH Dose Rates(BioOne, 2020-12-01) Breitkreutz, Dylan Yamabe; Shumail, Muhammad; Bush, Karl K.; Tantawi, Sami G.; Maxim, Peter G.; Loo, Billy W., Jr.; Radiation Oncology, School of MedicineIn this work, we investigated the delivery of a clinically acceptable pediatric whole brain radiotherapy plan at FLASH dose rates using two lateral opposing 40-MeV electron beams produced by a practically realizable linear accelerator system. The EGSnrc Monte Carlo software modules, BEAMnrc and DOSXYZnrc, were used to generate whole brain radiotherapy plans for a pediatric patient using two lateral opposing 40-MeV electron beams. Electron beam phase space files were simulated using a model of a diverging beam with a diameter of 10 cm at 50 cm SAD (defined at brain midline). The electron beams were collimated using a 10-cm-thick block composed of 5 cm of aluminum oxide and 5 cm of tungsten. For comparison, a 6-MV photon plan was calculated with the Varian AAA algorithm. Electron beam parameters were based on a novel linear accelerator designed for the PHASER system and powered by a commercial 6-MW klystron. Calculations of the linear accelerator's performance indicated an average beam current of at least 6.25 µA, providing a dose rate of 115 Gy/s at isocenter, high enough for cognition-sparing FLASH effects. The electron plan was less homogenous with a homogeneity index of 0.133 compared to the photon plan's index of 0.087. Overall, the dosimetric characteristics of the 40-MeV electron plan were suitable for treatment. In conclusion, Monte Carlo simulations performed in this work indicate that two lateral opposing 40-MeV electron beams can be used for pediatric whole brain irradiation at FLASH dose rates of >115 Gy/s and serve as motivation for a practical clinical FLASH radiotherapy system, which can be implemented in the near future.