ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Mononuclear cell (MNC)-derived ROS generation"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Glucose-stimulated oxidative stress in mononuclear cells is related to pancreatic β-cell dysfunction in polycystic ovary syndrome
    (The Endocrine Society, 2014-01) Malin, Steven K.; Kirwan, John P.; Sia, Chang Ling; González, Frank; Department of Obstetrics and Gynecology, IU School of Medicine
    CONTEXT: Oxidative stress induced by reactive oxygen species (ROS) is involved in the development of pancreatic β-cell dysfunction. OBJECTIVE: We determined the relationship between mononuclear cell (MNC)-derived ROS generation and p47phox protein content in response to glucose ingestion and β-cell function in women with polycystic ovary syndrome (PCOS). DESIGN: This was a cross-sectional study. SETTING: This study was conducted at an academic medical center. PARTICIPANTS: Twenty-nine normoglycemic women with PCOS (13 lean, 16 obese) and 25 ovulatory controls (16 lean, 9 obese) underwent a 3-h 75-g oral glucose tolerance test (OGTT). MAIN OUTCOME VARIABLES: Pancreatic β-cell function was calculated as glucose-stimulated insulin secretion (insulin/glucose area under the curve0-30 min; GSIS)×Matsuda index-derived insulin sensitivity (ISOGTT). ROS generation was measured by chemiluminescence, and p47phox protein was quantified by Western blotting in MNC isolated from blood samples obtained at 0 and 2 hours of the OGTT. RESULTS: Compared with controls, women with PCOS exhibited a higher percent change from baseline in ROS generation and p47phox protein in conjunction with greater GSIS and a tendency toward lower β-cell function. Lean women with PCOS exhibited a greater percent change from baseline in ROS generation and p47phox protein yet had similar GSIS responses compared with lean controls despite having lower ISOGTT. For the combined groups, β-cell function was inversely related to ROS generation and p47phox protein. GSIS was directly related to body mass index, central obesity, and circulating androgens. CONCLUSION: In normoglycemic women, obesity plays a role in exaggerating GSIS. However, MNC-derived oxidative stress is independent of obesity and may contribute to the decline in β-cell function in women with PCOS.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University