- Browse by Subject
Browsing by Subject "Monocyte"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Clinical significance of monocyte heterogeneity(SpringerOpen, 2015-02-14) Stansfield, Brian K.; Ingram, David A.; Department of Medicine, IU School of MedicineMonocytes are primitive hematopoietic cells that primarily arise from the bone marrow, circulate in the peripheral blood and give rise to differentiated macrophages. Over the past two decades, considerable attention to monocyte diversity and macrophage polarization has provided contextual clues into the role of myelomonocytic derivatives in human disease. Until recently, human monocytes were subdivided based on expression of the surface marker CD16. "Classical" monocytes express surface markers denoted as CD14(++)CD16(-) and account for greater than 70% of total monocyte count, while "non-classical" monocytes express the CD16 antigen with low CD14 expression (CD14(+)CD16(++)). However, recognition of an intermediate population identified as CD14(++)CD16(+) supports the new paradigm that monocytes are a true heterogeneous population and careful identification of specific subpopulations is necessary for understanding monocyte function in human disease. Comparative studies of monocytes in mice have yielded more dichotomous results based on expression of the Ly6C antigen. In this review, we will discuss the use of monocyte subpopulations as biomarkers of human disease and summarize correlative studies in mice that may yield significant insight into the contribution of each subset to disease pathogenesis.Item Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans(Elsevier, 2016-08) Bessler, Waylan K.; Hudson, Farlyn Z.; Zhang, Hanfang; Harris, Valerie; Wang, Yusi; Mund, Julie A.; Downing, Brandon; Ingram, David A., Jr; Case, Jamie; Fulton, David J.; Stansfield, Brian K.; Pediatrics, School of MedicineNeurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.Item Repeated Mild Traumatic Brain Injury in Mice Elicits Long Term Innate Immune Cell Alterations in Blood, Spleen, and Brain(Elsevier, 2023) Smith, Jared A.; Nguyen, Tyler; Karnik, Sonali; Davis, Brittany C.; Al-Juboori, Mohammed H.; Kacena, Melissa A.; Obukhov, Alexander G.; White, Fletcher A.; Anesthesia, School of MedicineMild traumatic brain injury is an insidious event whereby the initial injury leads to ongoing secondary neuro- and systemic inflammation through various cellular pathways lasting days to months after injury. Here, we investigated the impact of repeated mild traumatic brain injury (rmTBI) and the resultant systemic immune response in male C57B6 mice using flow cytometric methodology on white blood cells (WBCs) derived from the blood and spleen. Isolated mRNA derived from spleens and brains of rmTBI mice was assayed for changes in gene expression at one day, one week, and one month following the injury paradigm. We observed increases in Ly6C+, Ly6C-, and total monocyte percentages in both blood and spleen at one month after rmTBI. Differential gene expression analysis for the brain and spleen tissues uncovered significant changes in many genes, including csf1r, itgam, cd99, jak1,cd3ε, tnfaip6, and nfil3. Additional analysis revealed alterations in several immune signaling pathways over the course of one month in the brain and spleen of rmTBI mice. Together, these results indicate that rmTBI produces pronounced gene expression changes in the brain and spleen. Furthermore, our data suggest that monocyte populations may reprogram towards the proinflammatory phenotype over extended periods of time after rmTBI.