- Browse by Subject
Browsing by Subject "Molecular recognition feature"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mechanisms of binding diversity in protein disorder : molecular recognition features mediating protein interaction networks(2013-07) Hsu, Wei-Lun; Dunker, A. Keith; Zhou, Yaoqi; Hurley, Thomas D., 1961-; Uversky, Vladimir N.Intrinsically disordered proteins are proteins characterized by lack of stable tertiary structures under physiological conditions. Evidence shows that disordered proteins are not only highly involved in protein interactions, but also have the capability to associate with more than one partner. Short disordered protein fragments, called “molecular recognition features” (MoRFs), were hypothesized to facilitate the binding diversity of highly-connected proteins termed “hubs”. MoRFs often couple folding with binding while forming interaction complexes. Two protein disorder mechanisms were proposed to facilitate multiple partner binding and enable hub proteins to bind to multiple partners: 1. One region of disorder could bind to many different partners (one-to-many binding), so the hub protein itself uses disorder for multiple partner binding; and 2. Many different regions of disorder could bind to a single partner (many-to-one binding), so the hub protein is structured but binds to many disordered partners via interaction with disorder. Thousands of MoRF-partner protein complexes were collected from Protein Data Bank in this study, including 321 one-to-many binding examples and 514 many-to-one binding examples. The conformational flexibility of MoRFs was observed at atomic resolution to help the MoRFs to adapt themselves to various binding surfaces of partners or to enable different MoRFs with non-identical sequences to associate with one specific binding pocket. Strikingly, in one-to-many binding, post-translational modification, alternative splicing and partner topology were revealed to play key roles for partner selection of these fuzzy complexes. On the other hand, three distinct binding profiles were identified in the collected many-to-one dataset: similar, intersecting and independent. For the similar binding profile, the distinct MoRFs interact with almost identical binding sites on the same partner. The MoRFs can also interact with a partially the same but partially different binding site, giving the intersecting binding profile. Finally, the MoRFs can interact with completely different binding sites, thus giving the independent binding profile. In conclusion, we suggest that protein disorder with post-translational modifications and alternative splicing are all working together to rewire the protein interaction networks.Item The structural and functional signatures of proteins that undergo multiple events of post-translational modification(Wiley, 2014-08) Pejaver, Vikas; Hsu, Wei-Lun; Dunker, A. Keith; Uversky, Vladimir N.; Radivojac, Predrag; Biochemistry & Molecular Biology, School of MedicineThe structural, functional, and mechanistic characterization of several types of post-translational modifications (PTMs) is well-documented. PTMs, however, may interact or interfere with one another when regulating protein function. Yet, characterization of the structural and functional signatures of their crosstalk has been hindered by the scarcity of data. To this end, we developed a unified sequence-based predictor of 23 types of PTM sites that, we believe, is a useful tool in guiding biological experiments and data interpretation. We then used experimentally determined and predicted PTM sites to investigate two particular cases of potential PTM crosstalk in eukaryotes. First, we identified proteins statistically enriched in multiple types of PTM sites and found that they show preferences toward intrinsically disordered regions as well as functional roles in transcriptional, posttranscriptional, and developmental processes. Second, we observed that target sites modified by more than one type of PTM, referred to as shared PTM sites, show even stronger preferences toward disordered regions than their single-PTM counterparts; we explain this by the need for these regions to accommodate multiple partners. Finally, we investigated the influence of single and shared PTMs on differential regulation of protein-protein interactions. We provide evidence that molecular recognition features (MoRFs) show significant preferences for PTM sites, particularly shared PTM sites, implicating PTMs in the modulation of this specific type of macromolecular recognition. We conclude that intrinsic disorder is a strong structural prerequisite for complex PTM-based regulation, particularly in context-dependent protein-protein interactions related to transcriptional and developmental processes.