- Browse by Subject
Browsing by Subject "Molecular biology"
Now showing 1 - 10 of 30
Results Per Page
Sort Options
Item 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin(American Society for Clinical Investigation, 2021-03-15) Frump, Andrea L.; Albrecht, Marjorie; Yakubov, Bakhtiyor; Breuils-Bonnet, Sandra; Nadeau, Valérie; Tremblay, Eve; Potus, Francois; Omura, Junichi; Cook, Todd; Fisher, Amanda; Rodriguez, Brooke; Brown, R. Dale; Stenmark, Kurt R.; Rubinstein, C. Dustin; Krentz, Kathy; Tabima, Diana M.; Li, Rongbo; Sun, Xin; Chesler, Naomi C.; Provencher, Steeve; Bonnet, Sebastien; Lahm, Tim; Medicine, School of MedicineWomen with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α–null or ER-β–null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.Item A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle(Elsevier, 2023-03-31) Wang, Ruizhong; Kumar, Brijesh; Bhat-Nakshatri, Poornima; Khatpe, Aditi S.; Murphy, Michael P.; Wanczyk, Kristen E.; Simpson, Edward; Chen, Duojiao; Gao, Hongyu; Liu, Yunlong; Doud, Emma H.; Mosley, Amber L.; Nakshatri, Harikrishna; Surgery, School of MedicineSkeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.Item Acquisition, processing, and single-cell analysis of normal human breast tissues from a biobank(Cell Press, 2021-12-16) Bhat-Nakshatri, Poornima; Marino, Natascia; Gao, Hongyu; Liu, Yunlong; Storniolo, Anna Maria; Nakshatri, Harikrishna; Surgery, School of MedicineThe Komen Tissue Bank is the only biorepository in the world for normal breast tissues from women. Below we report the acquisition and processing of breast tissue from volunteer donors and describe an experimental and analysis pipeline to generate a single-cell atlas. This atlas is based on single-cell RNA-seq and is useful to derive breast epithelial cell subcluster-specific gene expression signatures, which can be applied to breast cancer gene expression data to identify putative cell-of-origin. For complete details on the use and execution of this protocol, please refer to Bhat-Nakshatri et al. (2021).Item Activation of AKT induces EZH2-mediated β-catenin trimethylation in colorectal cancer(Elsevier, 2023-08-16) Ghobashi, Ahmed H.; Vuong, Truc T.; Kimani, Jane W.; Ladaika, Christopher A.; Hollenhorst, Peter C.; O’Hagan, Heather M.; Biochemistry and Molecular Biology, School of MedicineColorectal cancer (CRC) develops in part through the deregulation of different signaling pathways, including activation of the WNT/β-catenin and PI3K/AKT pathways. Additionally, the lysine methyltransferase enhancer of zeste homologue 2 (EZH2) is commonly overexpressed in CRC. EZH2 canonically represses gene transcription by trimethylating lysine 27 of histone H3, but also has non-histone substrates. Here, we demonstrated that in CRC, active AKT phosphorylated EZH2 on serine 21. Phosphorylation of EZH2 by AKT induced EZH2 to interact with and methylate β-catenin at lysine 49, which increased β-catenin’s binding to the chromatin. Additionally, EZH2-mediated β-catenin trimethylation induced β-catenin to interact with TCF1 and RNA polymerase II and resulted in dramatic gains in genomic regions with β-catenin occupancy. EZH2 catalytic inhibition decreased stemness but increased migratory phenotypes of CRC cells with active AKT. Overall, we demonstrated that EZH2 modulates AKT-induced changes in gene expression through the AKT/EZH2/β-catenin axis in CRC.Item ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide(Springer Nature, 2022-08-03) Kurup, Reshma Raghava; Oakes, Eimile K.; Vadlamani, Pranathi; Nwosu, Obi; Danthi, Pranav; Hundley, Heather A.; Medicine, School of MedicineThe RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.Item Asparagine starvation suppresses histone demethylation through iron depletion(Elsevier, 2023-03-16) Jiang, Jie; Srivastava, Sankalp; Liu, Sheng; Seim, Gretchen; Claude, Rodney; Zhong, Minghua; Cao, Sha; Davé, Utpal; Kapur, Reuben; Mosley, Amber L.; Zhang, Chi; Wan, Jun; Fan, Jing; Zhang, Ji; Pediatrics, School of MedicineIntracellular α-ketoglutarate is an indispensable substrate for the Jumonji family of histone demethylases (JHDMs) mediating most of the histone demethylation reactions. Since α-ketoglutarate is an intermediate of the tricarboxylic acid cycle and a product of transamination, its availability is governed by the metabolism of several amino acids. Here, we show that asparagine starvation suppresses global histone demethylation. This process is neither due to the change of expression of histone-modifying enzymes nor due to the change of intracellular levels of α-ketoglutarate. Rather, asparagine starvation reduces the intracellular pool of labile iron, a key co-factor for the JHDMs to function. Mechanistically, asparagine starvation suppresses the expression of the transferrin receptor to limit iron uptake. Furthermore, iron supplementation to the culture medium restores histone demethylation and alters gene expression to accelerate cell death upon asparagine depletion. These results suggest that suppressing iron-dependent histone demethylation is part of the cellular adaptive response to asparagine starvation.Item Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia(Springer Nature, 2022) Di Biase, Maria A.; Geaghan, Michael P.; Reay, William R.; Seidlitz, Jakob; Weickert, Cynthia Shannon; Pébay, Alice; Green, Melissa J.; Quidé, Yann; Atkins, Joshua R.; Coleman, Michael J.; Bouix, Sylvain; Knyazhanskaya, Evdokiya E.; Lyall, Amanda E.; Pasternak, Ofer; Kubicki, Marek; Rathi, Yogesh; Visco, Andrew; Gaunnac, Megan; Lv, Jinglei; Mesholam-Gately, Raquelle I.; Lewandowski, Kathryn E.; Holt, Daphne J.; Keshavan, Matcheri S.; Pantelis, Christos; Öngür, Dost; Breier, Alan; Cairns, Murray J.; Shenton, Martha E.; Zalesky, Andrew; Psychiatry, School of MedicineBrain morphology differs markedly between individuals with schizophrenia, but the cellular and genetic basis of this heterogeneity is poorly understood. Here, we sought to determine whether cortical thickness (CTh) heterogeneity in schizophrenia relates to interregional variation in distinct neural cell types, as inferred from established gene expression data and person-specific genomic variation. This study comprised 1849 participants in total, including a discovery (140 cases and 1267 controls) and a validation cohort (335 cases and 185 controls). To characterize CTh heterogeneity, normative ranges were established for 34 cortical regions and the extent of deviation from these ranges was measured for each individual with schizophrenia. CTh deviations were explained by interregional gene expression levels of five out of seven neural cell types examined: (1) astrocytes; (2) endothelial cells; (3) oligodendrocyte progenitor cells (OPCs); (4) excitatory neurons; and (5) inhibitory neurons. Regional alignment between CTh alterations with cell type transcriptional maps distinguished broad patient subtypes, which were validated against genomic data drawn from the same individuals. In a predominantly neuronal/endothelial subtype (22% of patients), CTh deviations covaried with polygenic risk for schizophrenia (sczPRS) calculated specifically from genes marking neuronal and endothelial cells (r = -0.40, p = 0.010). Whereas, in a predominantly glia/OPC subtype (43% of patients), CTh deviations covaried with sczPRS calculated from glia and OPC-linked genes (r = -0.30, p = 0.028). This multi-scale analysis of genomic, transcriptomic, and brain phenotypic data may indicate that CTh heterogeneity in schizophrenia relates to inter-individual variation in cell-type specific functions. Decomposing heterogeneity in relation to cortical cell types enables prioritization of schizophrenia subsets for future disease modeling efforts.Item Characterization of the virome associated with Haemagogus mosquitoes in Trinidad, West Indies(Springer Nature, 2021-08-16) Ali, Renee; Jayaraj, Jayaraman; Mohammed, Azad; Chinnaraja, Chinnadurai; Carrington, Christine V.F.; Severson, David W.; Ramsubhag, Adesh; Medical and Molecular Genetics, School of MedicineCurrently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector.Item Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism(Springer Nature, 2023-05-25) Mulcrone, Patrick L.; Lam, Anh K.; Frabutt, Dylan; Zhang, Junping; Chrzanowski, Matthew; Herzog, Roland W.; Xiao, Weidon; Pediatrics, School of MedicineAlthough more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.Item Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium(Springer Nature, 2023-05-21) Ning, Ke; Bhuckory, Mohajeet B.; Lo, Chien‑Hui; Sendayen, Brent E.; Kowal, Tia J.; Chen, Ming; Bansal, Ruchi; Chang, Kun‑Che; Vollrath, Douglas; Berbari, Nicolas F.; Mahajan, Vinit B.; Hu, Yang; Sun, Yang; Biology, School of SciencePrimary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
- «
- 1 (current)
- 2
- 3
- »