- Browse by Subject
Browsing by Subject "Moesin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling(Ivyspring International, 2022-01-01) Sun, Xun; Li, Kexin; Hase, Misato; Zha, Rongrong; Feng, Yan; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyBackground: Bone is a frequent site of metastases from breast cancer, but existing therapeutic options are not satisfactory. Although osteoblasts have active roles in cancer progression by assisting the vicious bone-destructive cycle, we employed a counterintuitive approach of activating pro-tumorigenic Wnt signaling and examined the paradoxical possibility of developing osteoblast-derived tumor-suppressive, bone-protective secretomes. Methods: Wnt signaling was activated by the overexpression of Lrp5 and β-catenin in osteoblasts as well as a pharmacological agent (BML284), and the therapeutic effects of their conditioned medium (CM) were evaluated using in vitro cell cultures, ex vivo breast cancer tissues, and a mouse model of osteolysis. To explore the unconventional regulatory mechanism of the action of Wnt-activated osteoblasts, whole-genome proteomics analysis was conducted, followed by immunoprecipitation and gain- and loss-of-function assays. Results: While osteoblasts did not present any innate tumor-suppressing ability, we observed that the overexpression of Lrp5 and β-catenin in Wnt signaling made their CM tumor-suppressive and bone-protective. The growth of breast cancer cells and tissues was inhibited by Lrp5-overexpressing CM (Lrp5 CM), which suppressed mammary tumors and tumor-driven bone destruction in a mouse model. Lrp5 CM also inhibited the differentiation and maturation of bone-resorbing osteoclasts by downregulating NFATc1 and cathepsin K. The overexpression of Lrp5 upregulated osteopontin that enriched Hsp90ab1 (Hsp90 beta) and moesin (MSN) in Lrp5 CM. Hsp90ab1 and MSN are atypical tumor-suppressing proteins since they are multi-tasking, moonlighting proteins that promote tumorigenesis in tumor cells. Importantly, Hsp90ab1 immuno-precipitated latent TGFβ and inactivated TGFβ, whereas MSN interacted with CD44, a cancer stem-cell marker, as well as fibronectin 1, an ECM protein. Furthermore, Hsp90ab1 and MSN downregulated KDM3A that demethylated histones, together with PDL1 that inhibited immune responses. Conclusion: In contrast to inducing tumor-enhancing secretomes and chemoresistance in general by inhibiting varying oncogenic pathways in chemotherapy, this study presented the unexpected outcome of generation tumor-suppressive secretomes by activating the pro-tumorigenic Wnt pathway. The results shed light on the contrasting role of oncogenic signaling in tumor cells and osteoblast-derived secretomes, suggesting a counterintuitive option for the treatment of breast cancer-associated bone metastasis.Item Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling: Erratum(Ivyspring International, 2023-01-01) Sun, Xun; Li, Kexin; Hase, Misato; Zha, Rongrong; Feng, Yan; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and Technology[This corrects the article DOI: 10.7150/thno.66148.].Item Suppression of osteosarcoma progression by engineered lymphocyte-derived proteomes(Elsevier, 2022-08-28) Li, Kexin; Sun, Xun; Li, Hudie; Ma, Hailan; Zhou, Meng; Minami, Kazumasa; Tamari, Keisuke; Ogawa, Kazuhiko; Pandya, Pankita H.; Saadatzadeh, M. Reza; Kacena, Melissa A.; Pollok, Karen E.; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyCancer cells tend to develop resistance to chemotherapy and enhance aggressiveness. A counterintuitive approach is to tame aggressiveness by an agent that acts opposite to chemotherapeutic agents. Based on this strategy, induced tumor-suppressing cells (iTSCs) have been generated from tumor cells and mesenchymal stem cells. Here, we examined the possibility of generating iTSCs from lymphocytes by activating PKA signaling for suppressing the progression of osteosarcoma (OS). While lymphocyte-derived CM did not present anti-tumor capabilities, the activation of PKA converted them into iTSCs. Inhibiting PKA conversely generated tumor-promotive secretomes. In a mouse model, PKA-activated CM suppressed tumor-induced bone destruction. Proteomics analysis revealed that moesin (MSN) and calreticulin (Calr), which are highly expressed intracellular proteins in many cancers, were enriched in PKA-activated CM, and they acted as extracellular tumor suppressors through CD44, CD47, and CD91. The study presented a unique option for cancer treatment by generating iTSCs that secret tumor-suppressive proteins such as MSN and Calr. We envision that identifying these tumor suppressors and predicting their binding partners such as CD44, which is an FDA-approved oncogenic target to be inhibited, may contribute to developing targeted protein therapy.